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Abstract 
 

In the classical single-image super-resolution (SISR) reconstruction method using convolutional neural networks, the extracted 

features are not fully utilized, and the training time is too long. Aiming at the above problems, we proposed an improved SISR 

method based on a residual network. Our proposed method uses a feature fusion technology based on improved residual blocks. The 

advantage of this method is the ability to fully and effectively utilize the features extracted from the shallow layers. In addition, we 

can see that the feature fusion can adaptively preserve the information from current and previous residual blocks and stabilize the 

training for deeper network. And we use the global residual learning to make network training easier. The experimental results show 

that the proposed method gets better performance than classic reconstruction methods.  

 
1. Introduction 

 
Single image super–resolution (SISR) recovers a high–resolution 

image from a single low-resolution image. It is a classical problem in 

computer vision and many Conventional SISR methods have been 

proposed. Such as interpolation-based [8] and reconstruction-based [9] 

methods. At present, these image super-resolution reconstruction methods 

are widely used in medical imaging, video surveillance, digital television, 

and other fields. Although these two different methods improve the 

resolution of the image and image quality, the reconstructed image still has 

the problem of blurred texture. And the entire reconstruction process 

consumes a lot of calculations. 

Recently, learning-based approaches have become a hot topic for 

tackling the image restoration problem. The method mainly learns a 

mapping between high-resolution images and corresponding low-

resolution images. Then, the learned mapping relationship is used to 

reconstruct high resolution images. 

Among them, Dong et al [1] firstly proposed the use of a three-layer 

convolutional neural network for image super-resolution (SRCNN) and 

achieved excellent improvement over traditional methods. Since the 

SRCNN is too simple to fully extract the detailed features of the image, it 

causes the reconstructed image is still a bit fuzzy. Kim et al [2] increased 

the depth of the network and proposed the use of a 20-layer convolutional 

neural network structure named very deep convolutional networks for 

super resolution (VDSR). The network of VDSR is obviously much deeper 

than SRCNN, but they only connect the first layer to the last layer. It causes 

image feature loss when learning features in the middle layer. 

To solve these drawbacks, in Section 3, we introduced an improved 

residual network that is mainly composed of multiple residual learning 

blocks. The residual learning block (RLB) proposed in this paper 

combines low-level features and high-level features with skip connections 

[7]. This is beneficial to learn effective features, enhance the delivery of 

features to provide richer information for image reconstruction. In addition, 

the connection method makes the network difficult to over-fitting. And it 

can reduce the problem of vanishing gradient. Then by using the feature 

fusion [3], the current and previous features are adaptively preserved. And 

it also improves the stability of the network. 

 

 

 

Figure 1. Structure of the residual block 
 

2. Related Work 

 
In recent years, convolutional neural networks have proposed new 

ideas for solving image super-resolution problems. Dong et al [1] firstly 

proposed SRCNN consisted of three layers to extract image features. 

SRCNN is a typical end-to-end network model used to learn a mapping 

from LR to HR patches. Authors attempted to build the deeper network, 

but the performance has not improved significantly. The generated image 

still looks blurry and it takes a long training time. However, the proposed 

residual network (ResNet) greatly reduces the network training time and 

achieves the deeper network structure. Since then, residual networks have 

been widely used in image super-resolution reconstruction problems. The 

VDSR proposed by Kim et al [2] also applied the residual network to make 

the network deeper to 20 layers, and performance is much better than 

SRCNN. But the network only connects the first layer and the last layer to 

implement residual learning. It still occurs training instability. And Some 

high-resolution features extracted from each layer are lost, which makes it 

difficult to improve image performance. In addition, the network handled 

multiple scales of super-resolution in the network, but it results in more 

memory usage than architectures with a single scale of super-resolution. 

We are inspired by the ResNet to deal with the above problem. Our 

proposed model in this paper improves the structure of residual block and 

combines the advantage of the VDSR. Next, we introduce the simple 

structure of the ResNet and VDSR. 
 

2.1 ResNet 

 
He et al [4] proposed ResNet, which is suitable for the deep network 

to solve the problems that gradient gradually disappears in 

backpropagation. This makes it impossible to optimize the weights of the 

first few layers of the network, so that the deep network cannot converge. 
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Figure 2. Simple structure of VDSR 

 
But the residual network directly connects the shallow network to the deep 

network by adding a skip connection (Identity Map) [7]. It allows the 

gradient to be well transmitted to the shallow layer and avoids the problem 

of degradation. The residual block is shown in Figure 1.  

Weight layer contains a convolutional layer and batch normalization 

(BN). Firstly, input image x passes weight layers and an activation 

function. After that, it generates an output. We denote Y as the output of 

the residual block.  

 
𝑌 = 𝑚𝑎𝑥(0, 𝑓(𝑥) + 𝑥)                 (1) 

 
where max(0, ) denotes the rectified linear units (ReLU).  

 

2.2 VDSR 

 
Figure 2 shows the simple structure of VDSR. To expand the 

receptive fields of the network, VDSR deepened the network to 20 layers. 

it can better extract the correlation between image pixels and improve 

network performance. VDSR firstly considered that the input image and 

the output image have great similarities. And the network constructed 

residual images and use global residual learning to solve the problem that 

is difficult to converge. Then using gradient cropping strategy to speed up 

training and make the training easy.  

 

 

3. Proposed Method 
 
3.1 Proposed Network 

 

 
Figure 3. Architecture of our proposed residual network 

 
In order to obtain more high-frequency features of images and 

effectively improve the single image reconstruction, the network in this 

paper does not simply stack convolutional layers. Our model consists of 

four parts as shown in Figure 3 

The first part that we use one convolution layer to extract shallow 

features. Let y denote as the low-resolution image. We firstly use a bicubic 

interpolation algorithm to preprocess y image and denote interpolated 
image as ILR. Our first Convolutional layer extracts feature F0 is 

 
𝐹0 = 𝐻0(𝐼𝐿𝑅),                   (2) 

 
Figure 4. Structure of our residual learning block 

 

where H0() = max(0, w ∗ ILR) and max(0, ) corresponds to rectified 

linear units (ReLU). The operator * denotes a convolution, w is weight and 

F0 is used as input of the residual learning block.  

The second part consists of D residual blocks. The Fd is the output 

of the d_th residual block and it can be represented as follows:  

 
𝐹𝑑 = 𝐻𝑅,𝑑

(𝐹𝑑−1) 

= 𝐻𝑅,𝑑 (𝐻𝑅,𝑑−1 ( (𝐻𝑅,1
(𝐹0)) )),      (3) 

 
where 𝐻𝑅 ,𝑑 ()denotes the operation of the d– th residual learning block. 

As shown in Figure 4, our small residual block employs the ResNet with 

slight modification. We remove the last ReLu part of the residual block to 

simplify the model. And the purpose of super-resolution reconstruction is 

to reconstruct the new super-resolution image using the original 

information of the image. But using BN can change the original 

information and it also occupies the storage space of the network. BN layer 

is equivalent to adding a convolutional layer to make network training 

more complicated. Therefore, we remove the BN layers. Then, each 

residual learning block contains our two small residual blocks are densely 

connected by skip connection and feature fusion. By doing so, we can take 

full advantage of the features extracted by each small residual block and 

improve image performance. And it makes network training more stable. 

More details are as follows: 

 
𝐹𝑑,1 = 𝑤2 ∗ (𝑚𝑎𝑥(0, 𝑤1 ∗ 𝐹𝑑−1)) + 𝐹𝑑−1    (4) 

𝐹𝑑,2 = 𝑤4 ∗ (𝑚𝑎𝑥(0, 𝑤3 ∗ 𝐹𝑑,1)) + 𝐹𝑑,1,     (5) 

 
where Fd,1,Fd,2  represent the output of each of residual block. Then 

feature fusion is applied to fuse F𝑑−1 and Fd,2. In addition, the output 

of the last residual block as the input of the current residual block is 

concatenated to the feature maps Fd. After that, adding a 1*1 convolution 

makes the number of output channels consistent with the original. 

The third part is image reconstruction. This step is familiar with the 

first part. The specific formula is as follows: 

 
𝐹𝑜𝑢𝑡 = 𝐻0(𝐹𝑑),                  (6) 

 
where Fout denotes an image reconstruction. 

Final, we use the global residual learning, which can reduce the 

problem of vanishing gradient caused by training a deep network. The 

formula is 

 
𝐼𝐻𝑅 = 𝐼𝐿𝑅 + 𝐹𝑜𝑢𝑡 ,                (7) 

 
where IHR  represent the last generated image.  
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Figure 5. Super resolution results for image butterfly with scale factor ×2 from set5  

 

 

Figure 6. Super resolution results for image zebra with scale factor ×2 from set14  

4. Experiment 
 
4.1 Training settings 
 
    For training, we use 91 images from the dataset provided by Yong et 

al [5]. In addition, to get more datasets, we randomly augment the patches 

by rotating 90, 180, 270, flipping horizontally or vertically and downsizing 

05, 0.7. For testing, we use Set5, Set14 that are useful for the benchmark.  

The model in this paper is an 18-layer network consisting of four 

residual learning blocks. All convolutional layers use a 3*3 filter except a 

convolutional layer after feature fusion. We set the momentum to 0.9 and 

weight decay to 1e−4. Batch size is set to 16. The initial learning rate is 

set to 0.1, which decreases by a factor of 10 every 10 epochs and our total 

epoch is 50. Training images are divided into 41*41 patches. And we use 

it as a mini batch for stochastic gradient descent. We implement our 

proposed model with the Pytorch. Training our model takes about 22 hours 

with an NVIDIA GeForce GTX 960. 

 

4.2 Loss function 

 
The purpose of super-resolution reconstruction is to make the 

generated image IHR and the original image as similar as possible. In the 

paper, the mean square error (MSE) is used as the loss function of the 

network to estimate and optimize the parameter θ=w. The mathematical 

formula is as follows:  

 

𝐿(𝜃) = 𝑀𝑆𝐸 = 
1

𝑛
∑‖𝐼𝐻𝑅,𝑖 − 𝑋𝑖‖

2
𝑛

𝑛=1

.(8) 

 
In this paper, we use the peak signal-to-noise ratio (PSNR) to evaluate 

the quality of reconstructed images. The higher the PSNR, the better the 

predicted image. 
 

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔 (
2552

𝑀𝑆𝐸
).(9) 

 

 
Table 1. Benchmark results. Average PSNR for scale factor ×2，×3，×4  o

n datasets Set5, Set14. 

Dataset Scale Bicubic 
PSNR 

SRCNN 
PSNR 

VDSR 
PSNR 

Ours 
PSNR 

 
Set5 

× 2 
× 3 
× 4 

33.66 36.66 37.39 37.43 
30.39 32.75 33.58 33.62 
28.42 30.48 31.26 31.29 

 
Set14 

× 2 
× 3 
× 4 

30.24 32.42 32.89 32.93 
27.55 29.28 29.55 29.73 
26.00 27.49 27.92 27.94 

 

 
Figure 7. Convergence of our model and VDSR 

 
4.3 Results 

 
For the results of the Table 1, we used 91images to train our proposed 

network and VDSR. Our experimental results show that the average PSNR 

is improved by 0.03dB, 0.08dB compared with VDSR on Set5, Set14, 

respectively. In Figure 7, it is obvious that the performance of our model 

is higher than that of VDSR and both models begin to converge when 

epoch is equal to 30. In addition, we found that the proposed method 

improves the stability of the model when training epoch is equal to 15, 

while VDSR optimizes parameters to achieve optimal performance when 

epoch is equal to 25. It means that our proposed residual learning block is 

more stable training network than the directly stacked convolutional layer. 
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Table 2. Depth of the network results. Average PSNR for scale factor ×2，×3，×4 

on datasets Set5 
 

Dataset Scale 
No=4 
PSNR 

No=6 
PSNR 

No=8 
PSNR 

VDSR 
PSNR 

 
Set5 

× 2 
× 3 
× 4 

37.43 37.47 37.53 37.53 
33.62 33.71 33.80 33.66 
31.29 31.43 31.50 31.35 

 
We also study the effect of increasing residual network depth, we test 

three models with different numbers of residual learning blocks (4,6 and 

8). Table 2 shows the super resolution performance of our networks on 

Set5 with scale factor ×2. We denote No as the number of residual learning 

blocks. It verifies deepening the depth of the residual network, 

performance becomes better and PSNR is increased. We also found that 

the average PSNR is 0.1dB higher than the VDSR (20 layers) when we 

use 8 residual learning blocks (34 layers). Then, our model reduces 

training time compared with VDSR. And in Figure 5 and 6, results of 

images are given. Our method outperforms other classical methods in Set5, 

Set14. In addition, texture and high frequency details of reconstructed 

images are better.         
 

 

5. Conclusion 
 

In this paper, we proposed an improved residual network to achieve 

single image super-resolution reconstruction. In our residual learning 

block, two residual blocks are closely combined by a skip connection 

method. And by using feature fusion method, we designed our network 

which can fully and effectively utilize the features of shallow layers. 

Experimental results show that the proposed method has better 

performance than two conventional methods. And the image quality is 

improved by our proposed network. 
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