• Title/Summary/Keyword: feature point matching

Search Result 197, Processing Time 0.025 seconds

A flexible Feature Matching for Automatic Face and Facial Feature Points Detection (얼굴과 얼굴 특징점 자동 검출을 위한 탄력적 특징 정합)

  • 박호식;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.705-711
    • /
    • 2003
  • An automatic face and facial feature points(FFPs) detection system is proposed. A face is represented as a graph where the nodes are placed at facial feature points(FFPs) labeled by their Gabor features and the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between models and the input image. This matching model works likes random diffusion process in !be image space by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background, pose variations and distorted by facial accessories. We demonstrate the benefits of our approach by its implementation on the face identification system.

Matching Of Feature Points using Dynamic Programming (동적 프로그래밍을 이용한 특징점 정합)

  • Kim, Dong-Keun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.73-80
    • /
    • 2003
  • In this paper we propose an algorithm which matches the corresponding feature points between the reference image and the search image. We use Harris's corner detector to find the feature points in both image. For each feature point in the reference image, we can extract the candidate matching points as feature points in the starch image which the normalized correlation coefficient goes greater than a threshold. Finally we determine a corresponding feature points among candidate points by using dynamic programming. In experiments we show results that match feature points in synthetic image and real image.

A Flexible Feature Matching for Automatic Facial Feature Points Detection (얼굴 특징점 자동 검출을 위한 탄력적 특징 정합)

  • Hwang, Suen-Ki;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.2
    • /
    • pp.12-17
    • /
    • 2010
  • An automatic facial feature points(FFPs) detection system is proposed. A face is represented as a graph where the nodes are placed at facial feature points(FFPs) labeled by their Gabor features and the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between models and the input image. This matching model works likes random diffusion process in the image space by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background, pose variations and distorted by facial accessories. We demonstrate the benefits of our approach by its implementation on the system.

  • PDF

A Flexible Feature Matching for Automatic face and Facial feature Points Detection (얼굴과 얼굴 특징점 자동 검출을 위한 탄력적 특징 정합)

  • 박호식;손형경;정연길;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.608-612
    • /
    • 2002
  • An automatic face and facial feature points(FFPs) detection system is proposed. A face is represented as a graph where the nodes are placed at facial feature points(FFPs) labeled by their Gabor features md the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between models and the input image. This matching model works likes random diffusion process in the image spare by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background, pose variations and distorted by facial accessories. We demonstrate the benefits of our approach by its implementation on the fare identification system.

  • PDF

3-D Working Point Decision Method for Industrial Robot (산업용 로봇의 3차원 작업 위치 결정 방법)

  • Ryu, Hang-Ki;Lee, Jae-Kook;Kim, Byeong-Woo;Choi, Won-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.121-127
    • /
    • 2008
  • In this paper, we propose a new 3-D working point determination method for industrial robot using vision camera system and block interpolation technique with feature points in a vehicle body. To detect the feature points in a vehicle body, we applied the pattern matching method. For determination of working point, we applied block interpolation method. The block consists of 3-D type blocks with detected feature points per section. 3-D position is selected by Euclidean distance between 245 feature values and an acquired feature point. In order to evaluate the proposed algorithm, experiments are performed in glass equipment process in real industrial vehicle assembly line.

A Feature Tracking Algorithm Using Adaptive Weight Adjustment (적응적 가중치에 의한 특징점 추적 알고리즘)

  • Jeong, Jong-Myeon;Moon, Young-Shik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.68-78
    • /
    • 1999
  • A new algorithm for tracking feature points in an image sequence is presented. Most existing feature tracking algorithms often produce false trajectories, because the matching measures do not precisely reflect motion characteristics. In this paper, three attributes including spatial coordinate, motion direction and motion magnitude are used to calculate the feature point correspondence. The trajectories of feature points are determined by calculation the matching measure, which is defined as the minimum weighted Euclidean distance between two feature points. The weights of the attributes are updated reflecting the motion characteristics, so that the robust tracking of feature points is achieved. The proposed algorithm can find the trajectories correctly which has been shown by experimental results.

  • PDF

A Multiple Vehicle Object Detection Algorithm Using Feature Point Matching (특징점 매칭을 이용한 다중 차량 객체 검출 알고리즘)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.123-128
    • /
    • 2018
  • In this paper, we propose a multi-vehicle object detection algorithm using feature point matching that tracks efficient vehicle objects. The proposed algorithm extracts the feature points of the vehicle using the FAST algorithm for efficient vehicle object tracking. And True if the feature points are included in the image segmented into the 5X5 region. If the feature point is not included, it is processed as False and the corresponding area is blacked to remove unnecessary object information excluding the vehicle object. Then, the post processed area is set as the maximum search window size of the vehicle. And A minimum search window using the outermost feature points of the vehicle is set. By using the set search window, we compensate the disadvantages of the search window size of mean-shift algorithm and track vehicle object. In order to evaluate the performance of the proposed method, SIFT and SURF algorithms are compared and tested. The result is about four times faster than the SIFT algorithm. And it has the advantage of detecting more efficiently than the process of SUFR algorithm.

Height extraction of the man-made structure including occluded region using trinocular matching and DEM mapping (Trinocular 정합과 DEM 변환식을 이용한 차폐지역이 포함된 인공지물의 높이 추출)

  • 김지태;엄기문;이쾌희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.260-263
    • /
    • 1996
  • THe Purpose of this paper is to match the feature point of man-made structure and to obtain the DEM which are occluded in a image plane. We use the trinocular matching with epipolar lines and planes. If an occlusion appears at one of the trinocular images, the DEM mapping is used to estimate the height of feature points in it.

  • PDF

A 3-D Position Compensation Method of Industrial Robot Using Block Interpolation (블록 보간법을 이용한 산업용 로봇의 3차원 위치 보정기법)

  • Ryu, Hang-Ki;Woo, Kyung-Hang;Choi, Won-Ho;Lee, Jae-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.235-241
    • /
    • 2007
  • This paper proposes a self-calibration method of robots those are used in industrial assembly lines. The proposed method is a position compensation using laser sensor and vision camera. Because the laser sensor is cross type laser sensor which can scan a horizontal and vertical line, it is efficient way to detect a feature of vehicle and winding shape of vehicle's body. For position compensation of 3-Dimensional axis, we applied block interpolation method. For selecting feature point, pattern matching method is used and 3-D position is selected by Euclidean distance mapping between 462 feature values and evaluated feature point. In order to evaluate the proposed algorithm, experiments are performed in real industrial vehicle assembly line. In results, robot's working point can be displayed 3-D points. These points are used to diagnosis error of position and reselecting working point.

Markerless Image-to-Patient Registration Using Stereo Vision : Comparison of Registration Accuracy by Feature Selection Method and Location of Stereo Bision System (스테레오 비전을 이용한 마커리스 정합 : 특징점 추출 방법과 스테레오 비전의 위치에 따른 정합 정확도 평가)

  • Joo, Subin;Mun, Joung-Hwan;Shin, Ki-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.118-125
    • /
    • 2016
  • This study evaluates the performance of image to patient registration algorithm by using stereo vision and CT image for facial region surgical navigation. For the process of image to patient registration, feature extraction and 3D coordinate calculation are conducted, and then 3D CT image to 3D coordinate registration is conducted. Of the five combinations that can be generated by using three facial feature extraction methods and three registration methods on stereo vision image, this study evaluates the one with the highest registration accuracy. In addition, image to patient registration accuracy was compared by changing the facial rotation angle. As a result of the experiment, it turned out that when the facial rotation angle is within 20 degrees, registration using Active Appearance Model and Pseudo Inverse Matching has the highest accuracy, and when the facial rotation angle is over 20 degrees, registration using Speeded Up Robust Features and Iterative Closest Point has the highest accuracy. These results indicate that, Active Appearance Model and Pseudo Inverse Matching methods should be used in order to reduce registration error when the facial rotation angle is within 20 degrees, and Speeded Up Robust Features and Iterative Closest Point methods should be used when the facial rotation angle is over 20 degrees.