• 제목/요약/키워드: feature parameter

검색결과 535건 처리시간 0.017초

Matrix Factorization을 이용한 음성 특징 파라미터 추출 및 인식 (Feature Parameter Extraction and Speech Recognition Using Matrix Factorization)

  • 이광석;허강인
    • 한국정보통신학회논문지
    • /
    • 제10권7호
    • /
    • pp.1307-1311
    • /
    • 2006
  • 본 연구에서는 행렬 분해 (Matrix Factorization)를 이용하여 음성 스펙트럼의 부분적 특정을 나타낼 수 있는 새로운 음성 파라마터를 제안한다. 제안된 파라미터는 행렬내의 모든 원소가 음수가 아니라는 조건에서 행렬분해 과정을 거치게 되고 고차원의 데이터가 효과적으로 축소되어 나타남을 알 수 있다. 차원 축소된 데이터는 입력 데이터의 부분적인 특성을 표현한다. 음성 특징 추출 과정에서 일반적으로 사용되는 멜 필터뱅크 (Mel-Filter Bank)의 출력 을 Non-Negative 행렬 분해(NMF:Non-Negative Matrix Factorization) 알고리즘의 입 력으로 사용하고, 알고리즘을 통해 차원 축소된 데이터를 음성인식기의 입력으로 사용하여 멜 주파수 캡스트럼 계수 (MFCC: Mel Frequency Cepstral Coefficient)의 인식결과와 비교해 보았다. 인식결과를 통하여 일반적으로 음성인식기의 성능평가를 위해 사용되는 MFCC에 비하여 제안된 특정 파라미터가 인식 성능이 뛰어남을 알 수 있었다.

위너필터법이 적용된 MFCC의 파라미터 추출에 기초한 화자독립 인식알고리즘 (Speaker Independent Recognition Algorithm based on Parameter Extraction by MFCC applied Wiener Filter Method)

  • 최재승
    • 한국정보통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.1149-1154
    • /
    • 2017
  • 배경잡음 하에서 음성인식 시스템의 우수한 인식성능을 얻기 위해서 적절한 음성의 특징 파라미터를 선택하는 것이 매우 중요하다. 본 논문에서 사용한 특징 파라미터는 위너필터 방법이 적용된 인간의 청각 특성을 이용한 멜 주파수 켑스트럼 계수(Mel frequency cepstral coefficient, MFCC)를 사용한다. 즉, 본 논문에서 제안하는 특징 파라미터는 배경잡음을 제거한 후에 깨끗한 음성신호의 파라미터를 추출하는 새로운 방법이다. 제안한 수정된 MFCC 특징 파라미터를 다층 퍼셉트론 네트워크에 입력하여 학습시킴으로써 화자인식을 구현한다. 본 실험에서는 14차의 MFCC 특징 파라미터를 사용하여 화자독립 인식실험을 실시하였으며, 백색잡음이 혼합된 경우의 음성의 화자독립인식률은 평균 94.48%로 효과적인 결과를 구할 수 있었다. 본 논문에서 제안한 방법과 기존의 방법들을 비교하였을 때 본 논문에서 제안한 화자인식 성능이 수정된 MFCC 특징 파라미터를 사용함으로써 향상되었다.

잡음환경에서의 숫자음 인식을 위한 특징파라메타 (Features for Figure Speech Recognition in Noise Environment)

  • 이재기;고시영;이광석;허강인
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.473-476
    • /
    • 2005
  • 본 논문은 잡음에 강한 다양한 특징 파라메타를 제안한다. 기존의 음성인식에서 사용되는 특징 파라메타 MFCC(Mel Frequency Cepstral Coeeficient)는 좋은 성능을 보인다. 그러나 잡음에 보다 강인한 성능을 위해 기존에 사용되는 파라메타 MFCC의 특징공간을 변형시키는 알고리즘인 PCA(Principal Component Analysis)와 ICA(Independent Component Analysis)를 사용하여 특징 공간을 변형시킨 파라메타와 기존의 파라메타 MFCC의 성능을 비교하였다. 그 결과 ICA에 의해 변형된 특징 파라메타가 PCA로 변형된 파라메타와 MFCC보다 우수한 성능을 보였다.

  • PDF

Wavelet 특징 파라미터를 이용한 한국어 고립 단어 음성 검출 및 인식에 관한 연구 (A Study on Korean Isolated Word Speech Detection and Recognition using Wavelet Feature Parameter)

  • 이준환;이상범
    • 한국정보처리학회논문지
    • /
    • 제7권7호
    • /
    • pp.2238-2245
    • /
    • 2000
  • In this papr, eatue parameters, extracted using Wavelet transform for Korean isolated worked speech, are sued for speech detection and recognition feature. As a result of the speech detection, it is shown that it produces more exact detection result than eh method of using energy and zero-crossing rate on speech boundary. Also, as a result of the method with which the feature parameter of MFCC, which is applied to he recognition, it is shown that the result is equal to the result of the feature parameter of MFCC using FFT in speech recognition. So, it has been verified the usefulness of feature parameters using Wavelet transform for speech analysis and recognition.

  • PDF

HMM 인식기에서 상태별 다중 특징 파라미터 가중 (State-Dependent Weighting of Multiple Feature Parameters in HMM Recognizer)

  • 손종목;배건성
    • 한국음향학회지
    • /
    • 제18권4호
    • /
    • pp.47-52
    • /
    • 1999
  • 본 논문에서는 특징 파라미터의 분산과 인식성능에 대한 기여도를 고려하여 각 특징 파라미터를 가중시키는 방법을 제안하였다. 각 특징 파라미터의 인식률에 비례하게 전체 기여도를 설정하고, 각 특징 파라미터의 분산에 따라 가중요인을 설정하였다. 전체 기여도와 분산에 따른 가중요인을 사용하여 각 특징 파라미터의 상태별 가중치를 설정하였다. 제안한 방법의 유효성을 살펴보기 위해 유사음소 단위의 HMM 음성인식시스템을 사용하여 인식실험을 하였다. 인식실험에서 제안한 방법으로 가중치를 설정하였을 경우에 인식률이 7.7% 향상됨을 볼 수 있었다.

  • PDF

쌍방향 대응기법을 이용한 특징점 기반 움직임 계수 추정 (A feature-based motion parameter estimation using bi-directional correspondence scheme)

  • 서종열;김경중;임채욱;박규태
    • 한국통신학회논문지
    • /
    • 제21권11호
    • /
    • pp.2776-2788
    • /
    • 1996
  • A new feature-based motion parameter estimation for arbitrary-shaped regions is proposed. Existing motion parameter estimation algorithms such as gradient-based algorithm require iterations that are very sensitive to initial values and which often converge to a local minimum. In this paper, the motion parameters of an object are obtained by solving a set of linear equations derived by the motion of salient feature points of the object. In order to estimate the displacement of the feature points, a new process called the "bi-directional correspondence scheme" is proposed to ensure the robjstness of correspondence. The proposed correspondence scheme iteratively selects the feature points and their corresponding points until unique one-to-one correspondence is established. Furthermore, initially obtained motion paramerters are refined using an iterative method to give a better performance. The proposed algorithm can be used for motion estimationin object-based image coder, and the experimental resuls show that the proposed method outperforms existing schemes schemes in estimating motion parameters of objects in image sequences.sequences.

  • PDF

Non-Negative Matrix Factorization을 이용한 음성 스펙트럼의 부분 특징 추출 (Parts-based Feature Extraction of Speech Spectrum Using Non-Negative Matrix Factorization)

  • 박정원;김창근;허강인
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.49-52
    • /
    • 2003
  • In this paper, we propose new speech feature parameter using NMf(Non-Negative Matrix Factorization). NMF can represent multi-dimensional data based on effective dimensional reduction through matrix factorization under the non-negativity constraint, and reduced data present parts-based features of input data. In this paper, we verify about usefulness of NMF algorithm for speech feature extraction applying feature parameter that is got using NMF in Mel-scaled filter bank output. According to recognition experiment result, we could confirm that proposal feature parameter is superior in recognition performance than MFCC(mel frequency cepstral coefficient) that is used generally.

  • PDF

이산 웨이블렛 변환 기법을 이용한 변압기 열화신호의 특징추출에 관한 연구 (A Study on Feature Extraction of Transformers Aging Signal using discrete Wavelet Transform Technique)

  • 박재준;권동진;송영철;안창범
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권3호
    • /
    • pp.121-129
    • /
    • 2001
  • In this paper, a new efficient feature extraction method based on Daubechies discrete wavelet transform is presented. This paper especially deals with the assessment of process statistical parameter using the features extracted from the wavelet coefficients of measured acoustic emission signals. Since the parameter assessment using all wavelet coefficients will often turn out leads to inefficient or inaccurate results, we selected that level-3 stage of multi decomposition in discrete wavelet transform. We make use of the feature extraction parameter namely, maximum value of acoustic emission signal, average value, dispersion, skewness, kurtosis, etc. The effectiveness of this new method has been verified on ability a diagnosis transformer go through feature extraction in stage of aging(the early period, the middle period, the last period)

  • PDF

유ㆍ무성음 척도를 포함한 재구성 특징 파라미터의 음성 인식 성능평가 (Performance Evaluation of Speech Recognition Using the Reconstructed Feature Parameter with Voiced-Unvoiced Measure)

  • 이광석;한학용;고시영;허강인
    • 한국정보통신학회논문지
    • /
    • 제7권2호
    • /
    • pp.177-182
    • /
    • 2003
  • 본 연구는 유사음에 강인한 음성인식을 위하여 음성의 유ㆍ무성음 척도를 특징 파라미터에 추가 구성하여 음절과 음소단위의 음성인식을 행하였다. 이를 위하여 피치검출에 이용되는 알고리듬인 HPS(Harmonic Product Spectrum)의 스펙트럼 정보를 이용하여 유ㆍ무성음의 정도를 나타내는 척도를 제안한다. 제안된 척도는 HPS의 첨도와 피크의 개수 그리고 높이척도이다. 이들 척도 값을 포함하여 특징 파라미터를 재구성하고 제안된 특징의 유효성을 검증하기 위하여 CVC형 유사 음절 DB하에서 기존 특징 파라미터와 비교하여 음성인식 실험을 행하였다.

2-D 이동물체의 형태 정보 분석을 위한 특징 파라미터 추출 (Feature Parameter Extraction for Shape Information Analysis of 2-D Moving Object)

  • 김윤호;이주신
    • 한국통신학회논문지
    • /
    • 제16권11호
    • /
    • pp.1132-1142
    • /
    • 1991
  • 본 논문에서는 이동물체의 형태정보를 분석을 위한 이동물체의 특징파라미터를 추출하는 기법을 제안하였다. 이차원 영상에서 이동물체의 추출은 차영상 기법을 이용하였다. 이동물체의 특징 파라미터는 면적과 둘레, 면적과 둘레의 비(A/P ratio), 굴곡점(Vertex), 종횡비(X/Y ratio)로 하였다. 휘도 변화를 600 Lux${\sim}$1400 Lux로 가변시켜 휘도변화에 대한 각 특징파라미터의 오차 허용범위를 결정하였다. 제안된 방법의 타당성을 입증하기 위하여 모형 자동차를 이용하여 동일성을 판별한 결과 판정오류는 6%미만이었다.

  • PDF