• Title/Summary/Keyword: fcc Fe

Search Result 69, Processing Time 0.018 seconds

Microstructural Evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl High Entropy Alloys

  • Hyun, Jae Ik;Kong, Kyeong Ho;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • In the present study, microstructural evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl alloys has been investigated. The as-cast CuCrFeNi alloy consists of a single fcc phase with the lattice parameter of 0.358 nm, while the as-cast CuCrFeNiMn alloy consists of (bcc+fcc1+fcc2) phases with lattice parameters of 0.287 nm, 0.366 nm, and 0.361 nm. The heat treatment of the cast CuCrFeNiMn alloy results in the different type of microstructure depending on the heat treatment temperature. At $900^{\circ}C$ a new thermodynamically stable phase appears instead of the bcc solid solution phase, while at $1,000^{\circ}C$, the heat treated microstructure is almost same as that in the as-cast state. The addition of Al in CuCrFeNiMn alloy changes the constituent phases from (fcc1+fcc2+bcc) to (bcc1+bcc2).

Magnetism of Fe Monolayers on Nonmagnetic fcc Transition Metal (Cu, Rh, Pd, and Ag) (001) Surfaces (면심입방 금속(Cu, Rh, Pd, Ag) (001) 표면 위의 철 단층의 자성)

  • Yun, Won-Seok;Cha, Gi-Beom;Rho, Tae-Hwan;Han, Dong-Ho;Hong, Soon-Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.5
    • /
    • pp.165-170
    • /
    • 2009
  • It is well-known that a meta-stable fcc bulk Fe has an antiferromagnetic (AFM) ground state and could be synthesized by growing Fe on a proper fcc metal substrate. In this study magnetism of Fe monolayers on nonmagnetic fcc transition metal (Cu, Rh, Pd, and Ag) (001) surfaces has been investigated using the all-electron full-potential linearized augmented plane wave method. The Fe monolayers on Rh(001) and Pd(001) surfaces were calculated to be stabilized in an AFM state, whereas the Fe monlayers on Cu(001) and Ag(001) surfaces are stabilized in a ferromagnetic (FM) state. Noting that Cu and Ag have the smallest and largest lattice constants and the fcc bulk Fe with a larger lattice constant is getting stabilized in a ferromagnetic state, it is unexpectable and interesting. The calculated magnetic moments of the Fe atoms on Cu, Rh, Pd, and Ag(001) surfaces are 2.811, 2.945, 2.987, and 2.990 $_{{\mu}B}$ in FM states and 2.624, 2.879, 2.922, and 3.001 $_{{\mu}B}$ in AFM states.

결정 구조가 PtFe 산소 발생 반응 전기 화학적 촉매에 미치는 영향

  • Jeong, Won-Seok
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.308-311
    • /
    • 2015
  • https://nano.edison.re.kr/에서 제공하는 Linear Combination of Atomic Orbitals 기반 Density Functional Theory 전자구조계산 SW을 이용하여 정렬된 FCC 결정구조의 PtFe와 원자의 배열이 무질서한 PtFe의 산소 발생 반응의 과전압을 알아보았다. 화학 반응에 참여하는 정렬된 FCC PtFe의 표면 방위는 표면 에너지 계산을 통해 (111) 면으로 설정하였다. 과전압 값은 산소 발생 반응의 각 단계의 자유 에너지 변화를 계산하여 양의 반응 에너지이다. 과전압 측정 결과 정렬된 FCC 결정구조의 PtFe와 원자의 배열이 무질서한 PtFe의 과전압은 각 각 0.623875eV, 0.603118eV 이다.

  • PDF

Characterization of FePtN Nano-particles Synthesized by Thermal Decomposition and Mixed-gas Nitrification (열분해법과 혼합가스 질화법으로 합성한 FePtN 나노 입자의 특성)

  • Oh, Young Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.129-132
    • /
    • 2016
  • The effect of thermal-nitrification on L1o transfomation in nano-sized FePt particles was studied. As-synthesized FePt nanoparticles by thermal decomposition method have fcc structured phase and their Hc and Ms were 247.34 Oe and 27.308 emu/g, respectively. According to the XRD analysis, phase transformation from fcc (face centered cubic) to fct (face centered tetragonal) structure was revealed by heating under $NH_3+H_2$ mixed-gas atmosphere. Also a slight shift of each (111) peak indicated phase transformation from fcc to fct structure. Hc and Ms of fct FePtN were 1058.2 Oe and 32.718 emu/g, respectively. The nano-sized FePtN magnetic particles synthesized by thermal decomposition method and mixed-gas nitrification are expected for advanced applications such as high density magnetic recording media and biomedical materials.

Synthesis of FePt Nanoparticles by Chemical Reduction Process (화학적인 환원 공정에 의한 FePt 나노입자의 합성)

  • 김순길;이창우;이재성
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.242-246
    • /
    • 2004
  • FePt nanoparticles for high-density magnetic recording media were synthesized by the simultaneous chemical reduction of Fe(acac) $_2$ and Pt(acac) $_2$ with 1,2-hexadecanediol as the reducing reagent. TEM images showed that the shape of as-synthesized FePt nanoparticle was spherical and average particle size was 3 nm. Also, SAD pattern showed that crystal structure was disordered FCC (face centered cubic). These FCC structured nanoparticles were transformed FCT (face centered tetragonal) structure by annealing at 55$0^{\circ}C$ for 30 min in Ar atmosphere. XRD analysis revealed that as-synthesized FePt nanoparticles were transformed from disordered FCC to ordered FCT. Finally, the coercivity of 2 kOe for FePt nanoparticles with FCT structure was obtained by VSM measurement.

Composition and Coercivity of Fe-Co-Ni Alloy Electrodeposits (Fe-Co-Ni합금박막의 조성 및 자기적 성질)

  • 예길촌;김용웅;문근호
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.3
    • /
    • pp.195-202
    • /
    • 1996
  • The composition, the microstructure and the magnetic properties(HC and Hk) of Fe-Co-Ni alloy electrodeposits were investigated according to the electrolysis conditions using sulfate bath paddle agitated. The current efficiency of the alloys electrodeposition was considerably low in the range of 16∼50%. The Fe content(wt.%) of the alloy increased from 20% to 57% with current density, while Ni content of them decreased in the range of 70∼24% respectively, and Co content was nearly constant. As a result, Fe/Ni ratio of the alloy increased from 0.3 to 2.0 showing the anomalous codeposition. The structure of the alloy changed from fcc to the mixed one of fcc+bcc with the increase of Fe/Ni ratio. The preferred orientation of the alloy with fcc and bcc structure were (220) and (110) respectively. The alloy with Fe/Ni ratio(0.3∼l.2) had the lowest coercivity of 0.4∼0.8 Oe.

  • PDF

Magneto-optical and optical properties of Fe-Au alloy films in a wide composition range

  • Hyun, Y.H.;Kim, C.O.;Lee, Y.P.;Kudryavtsev, Y.V.;Gontarz, R.;Kim, K.W.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.5 no.2
    • /
    • pp.43-46
    • /
    • 2001
  • Fe-Au alloys are characterized by the complete solubility, and exhibit an fcc-bcc structural transformation at the Fe-rich side. The magneto-optical(equatorial Ken effect : EKE) and optical properties of Fe$\_$1-x/Aux (0 < x < 1) were investigated in the 0.5 - 5.0 eV energy range. The x-ray diffraction study shows the structural fcc-bcc transformation about 80 at. % of Fe. Noticeable changes in the optical properties caused by the fcc-bcc structural transformation was observed. The shape and intensity of the EKE spectra as well as the field dependence of the magneto-optical response were also significantly changed. It is thought that these changes are mainly comes from the induced magnetic moment in Au(and/or the emhanced magnetic moment of Fe). The nature of the prominent structure observed in the UV range of the magneto-optical Ken effect of Au/Fe multilayered films are disscussed in connection with the above results.

  • PDF

Microstructure and Mechanical Properties of Al-Ni-Mm-(Cu, Fe) Alloys Hot-Extruded from Gas-Atomized Powders (가스분사 분말로부터 고온 압출된 Al-Ni-Mm-(Cu, Fe)합금들의 미세구조 및 기계적 성질)

  • Kim, Hye-Sung
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.137-143
    • /
    • 2006
  • The effects of Cu and Fe additions on the thermal stability, microstructure and mechanical properties of $Al_{85}-Ni_{8.5}-Mm_{6.5},\;Al_{84}-Ni_{8.5}-Mm_{6.5}Cu_1,\;Al_{84}-Ni_{8.5}-M_{m6.5}Fe_1$ alloys, manufactured by gas atomization, degassing and hot-extrusion were investigated. Gas atomization, with a wide super-cooled liquid region, allowed the alloy powders to exhibit varying microstructure depending primarily on the powder size and composition. Al hotextruded alloys consisted of homogeneously-distributed fine-grained fcc-Al matrix and intermetallic compounds. A substitution of 1 at.% Al by Cu increased the thermal stability of the amorphous phase and produced alloy microstructure with smaller fcc-Al grains. On the other hand, the same substitution of 1 at.% Al by Fe decreased the stability of the amorphous phase and produced larger fcc-Al grains. The formation of intermetallic compounds such as $Al_3Ni,\;Al_{11}Ce_3\;and\;Al_{11}La_3$ was suppressed by the addition of Cu or Fe. Among the three alloys examined, the highest Vickers hardness and compressive strength were obtained for $Al_{84}-Ni_{8.5}-M_{m6.5}Cu_1$ alloy, and related to the finest fcc-Al grain size attained from increased thermal stability with Cu addition.

Magnetism and Magnetocrystalline Anisotropy at fcc Fe (001) Surface

  • Yun, Won-Seok;Cha, Gi-Beom;Hong, Soon-Cheol
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.144-148
    • /
    • 2008
  • The size and surface effects on the magnetism of a fcc Fe (001) surface was investigated by performing firstprinciples calculations on 3, 5, 7, and 9 monolayers fcc Fe (001) single slabs with two different two-dimensional lattice constants, ${\alpha}=3.44{\AA}$ (System I) and 3.65 ${\AA}$ (System II), using the all-electron full-potential linearized augmented plane wave method within a generalized gradient approximation. The surface layers were coupled ferromagnetically to the subsurface layer in both systems. However, the magnetism of the inner layers was quite different from each other. While all the inner layers of System II were ferromagnetically coupled in the same way as the surface layer, the inner layers of System I showed a peculiar magnetism, bilayer antiferromagnetism. The calculated spin magnetic moments per Fe atom were approximately 2.7 and 2.9 ${\mu}_B$ at the surface for Systems I and II, respectively, due to the almost occupied Fe d-state being in the majority spin state and band narrowing. The spin orientations of System I were out-of-plane regardless of its thickness, whereas the orientation of System II changed from out-of-plane to in-plane with increasing thickness.

Enhancement of Crystallinity and Exchange Bias Field in NiFe/FeMn/NiFe Trilayer with Si Buffer Layer Fabricated by Ion-Beam Deposition (이온 빔 증착법으로 제작한 NiFe/FeMn/NiFe 3층박막의 버퍼층 Si에 따른 결정성 및 교환결합세기 향상)

  • Kim, Bo-Kyung;Kim, Ji-Hoon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.132-136
    • /
    • 2002
  • Enhancement of crystallinity and exchange bias characteristics for NiFe/FeMn/NiFe trilayer with Si buffer layer fabricated by ion-beam deposition were examined. A Si buffer layer promoted (111) texture of fcc crystallities in the initial growth region of NiFe layer deposited on it. FeMn layers deposited on Si/NiFe bilayer exhibited excellent (111) crystal texture. The antiferromagnetic FeMn layer between top and bottom NiFe films with the buffer Si 50 ${\AA}$-thick induced a large exchange coupling field Hex with a different dependence. It was found that H$\sub$ex/ of the bottom and top NiFe films with Si buffer layer revealed large value of about 110 Oe and 300 Oe, respectively. In the comparison of two Ta and Si buffer layers, the NiFe/FeMn/NiFe trilayer with Si could possess larger exchange coupling field and higher crystallinity.