DOI QR코드

DOI QR Code

Characterization of FePtN Nano-particles Synthesized by Thermal Decomposition and Mixed-gas Nitrification

열분해법과 혼합가스 질화법으로 합성한 FePtN 나노 입자의 특성

  • Oh, Young Woo (Department of Nano Science and Materials Engineering)
  • 오영우 (경남대학교 나노신소재공학과)
  • Received : 2016.07.26
  • Accepted : 2016.08.25
  • Published : 2016.08.31

Abstract

The effect of thermal-nitrification on L1o transfomation in nano-sized FePt particles was studied. As-synthesized FePt nanoparticles by thermal decomposition method have fcc structured phase and their Hc and Ms were 247.34 Oe and 27.308 emu/g, respectively. According to the XRD analysis, phase transformation from fcc (face centered cubic) to fct (face centered tetragonal) structure was revealed by heating under $NH_3+H_2$ mixed-gas atmosphere. Also a slight shift of each (111) peak indicated phase transformation from fcc to fct structure. Hc and Ms of fct FePtN were 1058.2 Oe and 32.718 emu/g, respectively. The nano-sized FePtN magnetic particles synthesized by thermal decomposition method and mixed-gas nitrification are expected for advanced applications such as high density magnetic recording media and biomedical materials.

열분해법으로 합성한 FePt 나노입자를 $NH_3+H_2$ 혼합가스 질화법으로 상변태와 동시에 질화시킨 FePtN 나노입자의 특성을 분석하였다. 초기 합성된 FePt 나노입자는 fcc 구조를 가졌으며, 보자력과 포화자화는 각각 247.34 Oe와 27.308 emu/g를 나타내었다. 혼합가스 질화법으로 열처리한 입자는 XRD 분석 결과 fcc 구조에서 fct 구조로 상변태가 진행되었으며, 열처리 온도의 증가에 따라 (111) 피크의 $2{\theta}$가 shift되는 특성을 나타내었다. fct 구조의 FePtN의 보자력과 포화자화는 각각 1058.2 Oe and 32.718 emu/g를 나타내었으며, 합성된 FePtN 나노자성입자는 고밀도 자기기록매체와 생체의료 분야에서의 응용이 기대 된다.

Keywords

References

  1. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000). https://doi.org/10.1126/science.287.5460.1989
  2. D. K. Kim, D. Kan, T. Veres, F. Normadin, J. K Liao, H. H. Kim, S. H. Lee, M. Zahn, and M. Muhammed, J. Appl. Phys. 97, 10Q918 (2005). https://doi.org/10.1063/1.1860851
  3. B. A. Jones, J. D. Dutson, K. O'Grady, B. J. Hickey, D. Li, N. Poudyal, and J. P. Liu, IEEE Trans. Magn. 42, 3066 (2006). https://doi.org/10.1109/TMAG.2006.880153
  4. D. H. Wei, J. Appl. Phys. 105, 07A715 (2009). https://doi.org/10.1063/1.3058690
  5. J. L. Zhang, J. Z. Kong, A. D. Li, Y. P. Gong, H. R. Guo, Q. Y. Yan, and D. Wu, J. Sol-Gel Sci. Technol. 64, 269 (2012). https://doi.org/10.1007/s10971-010-2373-8
  6. Y. Liu, Y. Jiang, N. Kadasala, X. Zhang, C. Mao, Y. wang, H. Liu, X. Jiang, J. Yang, and Y. Yan, J. Sol-Gel Sci. Technol. 72, 156 (2014). https://doi.org/10.1007/s10971-014-3442-1
  7. N. T. T. Trang, T. T. Thuy, K. Higashimine, D. M. Mott, and S. Maenosono, Plasmonics 8, 1177 (2013). https://doi.org/10.1007/s11468-013-9529-7
  8. J. Sort, S. Surinach, D. Baro, D. Muraviev, G. I. Dzhardimalieva, N. D. Golubeva, S. I. Pomogailo, A. D. Pomogailo, W. A. A. Macedo, D. Weller, V. Skumryev, and J. Nogoes, Adv. Mater. 18, 466 (2006). https://doi.org/10.1002/adma.200501265