• Title/Summary/Keyword: faulting

Search Result 131, Processing Time 0.019 seconds

Safety-Related Equipment Classification for Maintenance Purposes with Risk Measures

  • Park, Byoung-Chul;Kwon, Jong-Jooh;Cho, Sung-Hwan
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.838-843
    • /
    • 1998
  • Risk importance measures are widely wed to rank risk contributors in risk-based applications. Typically, Fussell-Vesely (F-V) importance and risk achievement worth (RAW) are used in the component importance raking for the reliability centered maintenance (RCM) analysis of safety system in nuclear power plants (NPPs). This study was performed as part of feasibility study on RCM for domestic NPPs, which is focused on the component importance ranking approach the maintenance recommendation. The approach of modulizing faulting tree basic events was applied in the simplification process of the PSA model and the validity of the approach was evaluated As a result of the case study, this paper included the importance and the maintenance recommendations for the safety-related equipments associated with safety injection and containment spray in large loss of coolant accident sequences.

  • PDF

Movement of the Yangsan Fault and Tectonic History around the Korean Peninsula (양산단층의 구조운동과 한반도 주변 지구조사)

  • 장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.228-234
    • /
    • 1998
  • To interpret the relationship between movement of the Yangsan fault and tectonics around the Korean peninsula, the six sequential paleostresses were reconstructed from 1, 033 striated small faults which were measured at 37 outcrops along the strike of the Yangsan fault. And, the relationship between these paleostresses of the Yangsan fault and the tectonic events around the Korean peninsula were compared. As compared with the tectonic history around the Korean peninsula, the movement of the Yangsan fault is interpreted as follows; The initial feature of the Yangsan fault was formed with the development of extension fractures by the NW-SE extension. The fault experienced a right-lateral strike-slip movement continuously. The movements had been continued until the Late Miocene age, which was the most active period in faulting. The left-lateral strike-slip movement was followed by subsequent tectonic events. In the last stage, the fault acted with a slight extension or right-lateral movement.

  • PDF

Trench Survey and Fault Displacement at Cheonbuk-myon Area along the Northern Part of Ulsan Fault System (울산단층계 북부 천북면 일대의 트렌치 조사와 단층변위)

  • 경재복
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.235-240
    • /
    • 1998
  • Quaternary fault movement of the Ulsan fault system was interpreted by aenal photograph, field survey and trench excavation. The geomorphological evidences associated with active fault are clearly shown at Cheonbuk-myeon area, northern part of Ulsan fault system. In the trench wall one reverse fault(N 50$^{\circ}$E, 70$^{\circ}$E) is identified between basement rock (Miocene mudstone) and gravel deposits Another thrust fault (NS) extends up to the red and light brown soil layers. Middle terrace surface shows cumulative vertical displacements of about 3 to 7 m. The horizontai displacement of the red soil by faulting event is about 1.8 to 2.4m. The age of the fault activity is younger than that of the soil layer, which is roughly estimated to be late Quaternary (about 100Ka)

  • PDF

Focal Mechanisms of earthquakes occured in 2001, 2002, (2001, 2002년 발생 지진의 발진기구 특성)

  • 신진수;강익범;박윤경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.16-22
    • /
    • 2003
  • The focal mechanisms of the earthquakes occurred in 2001 and 2002 are analyzed to understand the regional stress and tectonics in and around Korean Peninsula. The forty -three fault plane solutions are derived using the polarities of first arrival P-waves recorded at KIGAM, Bmh and KEPRI stations. The result suggest that thrust motion with significant amount of strike slip component is dominant mode of faulting. The larger population of mechanism is characterized by WNW-ESE striking nodal planes. NE-SW direction is interpreted as dominant compressional axis orientation of stress field. These solutions are similar to those of medium size earthquakes studied previously, which is known as typical regional tectonic stress orientation in and around Korean Peninsula.

  • PDF

Classification of Quaternary fault types and segmentation around the Ulsan Fault System (울산단층 주변 제4기 단층의 유형분류와 분절화)

  • 최원학;장천중;신정환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.28-35
    • /
    • 2003
  • Quaternary faults found around the Ulsan Fault System can be divided into 4 types based on the fault outcrop features : Type I fault cuts basements and Quaternary deposits of which remain on both hangwall and footwall. Type II fault is developed only in Quaternary deposit. Type III fault has inclined unconformity after Quaternary faulting. Type IV fault is common type around the Ulsan fault system and has horizontal unconformity surface after cutting earlier Quaternary deposit. After erosion, later Quaternary deposit overlays on both old deposit and basement. The Ulsan Fault System consists of three segments at large scale from north to south based on the lineament rank and shape, Quaternary fault location, and slip rate. The segment boundaries are identified by the existence of the two intervals which show no lineaments and Quaternary faults. But, if detail fault parameters could be obtained and used in segmentation, it can be divided into more than three segments.

  • PDF

The 29 May 2004 Offshore Southeast Coast of Korea Earthquake Sequence: Shallow Earthquakes in the Ulleung Back-arc basin, East Sea (Sea of Japan)

  • Kim, Won-Young;Noh, Myung-Hyun;Choi, Ho-Sun
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.249-262
    • /
    • 2006
  • The 29 May 2004 offshore Uljin, Korea earthquake was predominantly thrust-faulting at a depth of approximately 12 (±2) km. The mainshock attained the seismic moment of M0 =5.41 (±1.87)  1016 N m (Mw = 5.1). The focal mechanism indicates a subhorizontal P-axis trending 264° and plunging 2°. The orientation of P- and T-axis is consistent with the direction of absolute plate motion generally observed within the plates, hence the cause of the May 29 shock is the broad-scale stress pattern from the forces acting on the downgoing slab along the Japan trench and inhibiting forces balancing it. The 29 May 2004 earthquake occurred along a deep seated (~12 km), pre-existing feature that is expressed on the surface as the basement escarpment along the western and southern slopes of the Ulleung basin. The concentrated seismicity along this basement escarpment suggests that this feature may qualify as a seismic zone - the Ulleung basement escarpment seismic zone (UBESZ).

  • PDF

Geological Structure around Andong Fault System, Pungcheon-myeon, Andong, Korea (안동시 풍천면 안동단층계 주변의 지질구조)

  • Kang, Ji-Hoon;Lee, Duck-Seon
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.83-94
    • /
    • 2008
  • The Pungcheon-myeon, Andong, consists mainly of Precambrian metamorphic rocks, Jurassic igneous rocks, Cretaceous sedimentary rocks (Hasandong, Jinju and Iljik Formations) and Cretaceous igneous rocks (gabbroic rocks, dykes), in which several major faults are developed; Andong fault of ENE trend, which is the boundary fault of the Cretaceous Gyeongsang Basin and the Precambrian-Jurassic basement (Yeongnam Massif), Namhu fault parallel to it, Maebong fault of NNW direction, bow-shaped Gwangdeok fault of ENE direction which is convex toward SSE direction, and Hahoe fault of NNE direction. This paper is researched the geological structures around these major faults by means of the detailed geometric analysis on beddings, joints, faults and drag folds. As a result, a reverse slip faulting of top-to-the SSE movement accompanied with a regional drag folding is recognized from the arrangement of bedding poles measured around the Gwangdeok and Hahoe faults at its northeastern extension, and a zone of Gwangdeok drag fold of 150-300 m width, which is wider at the central and eastern parts of Gwangdeok fault and narrower at its western part and Hahoe fault, is also defined. It indicates that the Hahoe and Gwangdeok faults are a single fault and their movements are coeval unlike the results of earlier reasearchers. And, In this area are recognized two types of faults [(E)NE${\sim}$EW(fault I), WNW${\sim}$NNW (fault II), trending faults] and four types of joints [EW (I), (N)NW (II), NNE (III), NE (IV) trending joints]. These fractures were formed at least through four different events, named as Dn to Dn+3 phases. (1) Dn phase; the formation of joint (I) (Gwangdeok joint) and the intrusion of acidic dykes of EW trend under the compression of EW direction. (2) Dn+1 phase; the formations of joint (II) (Maebong joint), lens-shaped boudinage of acidic dykes, oblique-slip reverse fault (Fault I-Gwangdeok fault) under the compression of (N)NW direction, and the formation of regional zone of Gwangdeok drag fold accompanying the Gwangdeok faulting. (3) Dn+2 phase; those of joint (III), Fault II (Maebong fault) by dextral strike-slip movement of Maebong joint under the compression of NNE direction, and the extension cutting of Dn+1 structures due to the Maebong faulting. (4) Dn+3 phase; the jointing (IV) and the reactivation of Fault II as oblique-slip type with predominant dextral motion which took place under the compression of NE direction. It also suggests that the Maebong fault is not a tear fault deveolped during thrust tectonics of the Andong and Gwangdeok faults but is a post-fault during different tectonic event.

The Stratigraphy and Geologic Structure of the Metamorphic Complex in the Northwestern Area of the Kyonggi Massif (경기육괴서북부(京畿陸塊西北部)의 변성암복합체(變成岩複合體)의 층서(層序)와 지질구조(地質構造))

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.6 no.4
    • /
    • pp.201-216
    • /
    • 1973
  • Being believed thus far to be distributed in the wide areas in the vicinity of Seoul, the capital city of Korea, the Yonchon System in its type locality in Yonchon-gun from which the name derived was never previously traced down or correlated to the Precambrian metamorphic complex in Seoul area where the present study was carried out. Due to in accessibility to Yonchon area, the writer also could not trace the system down to the area studied so as to correlate them. The present study endeavored to differentiate general stratigraphy and interprete the structure of the metamorphic complex in the area. In spite of the complexity of structure and rapid changes in lithofacies of the complex, it was succeeded to find out the key bed by which the stratigraphy and structure of the area could be straightened out. The keybeds were the Buchon limestone bed in the western parts of the area; Daisongri quartzite bed cropped out in the southeastern area; Jangrak quartzite bed scattered in the several localities in the northwest, southwest, and eastern parts of the area; and Earn quartzite bed isolated in the eastern part of the area. These keybeds together with the broad regional structure made it possible to differentiated the Precambrian rocks in ascending order into the Kyonggi metamorphic complex, Jangrak group and Chunsung group which are in clinounconformable relation, and the first complex were again separated in ascending order into Buchon, Sihung, and Yangpyong metermorphic groups. Althcugh it has being vaguely called as the Yonchon system thus far, the Kyonggi metamorphic complex have never been studied before. The complex might, however, belong to early to early-middle Precambrian age. The Jangrak and Chunsung group were correlated to the Sangwon system in North Korea by the writer (1972), but it became apparent that the rocks of the groups have different lithology and highly metamorphosd than those of the Sangwon system which has thick sequence of limestone and slightly metamorphosed. Being deposited in the margin of the basin, it is natural that the groups poccess terrestrial sediments rather than limestone, yet no explanation is at hand as to what was the cause of bringing such difference in grade of metamorphism. Thus the writer attempted to correlate the both groups to those of pre-Sangwon and post-Yonchon which might be middle to early-late Precambrian time. Judging from difference in grade of deformation and unconformity between the Kyonggi metamorphic complex, Jangrak group, and Chunsung group, three stages of orogeny were established: the Kyonggi, Jangrak orogenies, and Chunsung disturbance toward younger age. It is rather astonishing to point out that the structure of these Precambrian formations. was not effected by Daebo orogeny of Jurassic age. The post-tectonic block faulting was accompanied by these orogenies, and in consequence NNE and N-S trending faults were originated. These faulting were intermittented and repeated until Daebo orogeny at which granites intruded along these faults. The manifestation of alignment of these faults is indicated by the parallel and straight linear development of valleys and streams in the Kyonggi Massifland.

  • PDF

Analysis on the Source Characteristics of the Recent Five-year Earthquakes Occurred in the Central and Western Areas of the Korean Peninsula (최근 5년간 한반도 중서부 지역에서 발생한 지진의 진원 특성 분석)

  • Back, Jin-Ju;Kyung, Jai-Bok;Choi, Ho-Seon
    • Journal of the Korean earth science society
    • /
    • v.32 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • Focal mechanism solutions in the central and western areas of the Korean Peninsula (36-37.8$^{\circ}N$, 126-128$^{\circ}E$) were obtained from the analysis of the recent seventeen earthquakes (M${\geq}$2.2) which occurred from January, 2005 to May, 2010. The spatial differences between the epicenters recalculated by this study and those announced by the Korea Meteorological Administration are less than $0.03^{\circ}$, indicating a small deviation. Focal mechanism solutions were obtained from the analysis of P wave polarities, SH wave polarities and SH/P amplitude ratios. The focal mechanism solutions show dominant strike-slip faulting or oblique slip faulting with strike-slip components. The P-axes trends are mainly ENE-WSW or E-W directions. The direction of fault plane and auxillary fault plane with NNE-SSW and WNW-ESE are almost parallel to the general trends of lineaments in the study area. The results also show that focal mechanism solutions and the main axis of stress field in the Kyonggi massif and Okchon belt are almost same.

Paleoseismological Study and Evaluation of Maximum Earthquake Magnitude along the Yangsan and Ulsan Fault Zones in the Southeastern Part of Korea (남한 남동부 양산단층대와 울산단층대의 고지진 연구와 최대 지진 규모 평가)

  • Kyung, Jai-Bok
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • The paleoseismological study in Korea has begun along the Yangsan fault zone (YFZ) and Ulsan fault zone (UFZ) since 1994. Some evidences related to late Quaternary movement are found at only some part of the YFZ, such as Pyonghae, Yuge, and Eonyang-Tongdosa areas. However, it is found along the most of the UFZ except the northen and southern ends of the fault. The dominant time span of faulting events along the YFZ and UFZ are quite different, and 500 ka to 200 ka and 300 ka to recent time, respectively. The dominant faulting senses of the YFZ and UFZ are right-lateral strike slip and reverse, respectively. These senses correspond well with the focal mechanism of recent occurring earthquakes along these two fault zones. If we evaluate the intensity of the activity of the YFZ from the average slip rate, which is 0.1~0.04 m/ka, it is comparable with the faults of higher C class in Japan. The slip rate of UFZ, which is 0.2~0.06 m/ka, is comparable with the faults of lower B to higher C class. Based on the relationship between maximum displacement and magnitude, the maximum earthquake magnitude is evaluated to be 6.8 and 7.0 in the YFZ and UFZ, respectively. An intensive studies are needed to clarify the problems such as segmentation of faults, return period, and geological evidences related to historical earthquakes.