• Title/Summary/Keyword: fault diagnostic system

Search Result 188, Processing Time 0.021 seconds

Fault Diagnostic System Based on Fuzzy Time Cognitive Map

  • Lee, Kee-Sang;Kim, Sung-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.62-68
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. Authors have already proposed a diagnostic system based on FCM to utilized to identify the true origin of fault by on-line pattern diagnosis. In FCM based fault diagnosis, Temporal Associative Memories (TAM) recall of FCM is utilized to identify the true origin of fault by on-line pattern match where predicted pattern sequences obtained from TAM recall of fault FCM models are compared with actually observed ones. In engineering processes, the propagation delays are induced by the dynamics of processes and may vary with variables involved. However, disregarding such propagation delays in FCM-based fault diagnosis may lead to erroneous diagnostic results. To solve the problem, a concept of FTCM(Fuzzy Time Cognitive Map) is introduced into FCM-based fault diagnosis in this work. Expecially, translation method of FTCM makes it possible to diagnose the fault for some discrete time. Simulation studies through two-tank system is carried out to verify the effectiveness of the proposed diagnostic scheme.

  • PDF

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF

Development of Neuro-Fuzzy-Based Fault Diagnostic System for Closed-Loop Control system (페푸프 제어 시스템을 위한 퍼지-신경망 기방 고장 진단 시스템의 개발)

  • Kim, Seong-Ho;Lee, Seong-Ryong;Gang, Jeong-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.494-501
    • /
    • 2001
  • In this paper an ANFIS(Adativo Neuro-Fuzzy Inference System)- based fault detection and diagnosis for a closed loop control system is proposed. The proposed diagnostic system contains two ANFIS. One is run as a parallel model within the model in closed loop control(MCL) and the other is run as a series-parallel model within the process in closed loop(PCL) for the generation of relevant symptoms for fault diagnosis. These symptoms are further processed by another classification logic with simple rules and neural network for process and controller fault diagnosis. Experimental results for a DC shunt motor control system illustrate the effectiveness of the proposed diagnostic scheme.

  • PDF

A study on the design of fault diagnostic system based on PCA (PCA-기반 고장 진단 시스템 설계에 관한 연구)

  • Kim, Sung-Ho;Lee, Young-Sam;Han, Yoon-Jong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.600-605
    • /
    • 2003
  • PCA(Principle Component Analysis) has emerged as a useful tool for process monitoring and fault diagnosis. The general approach requires the user to identify the root cause by interpreting the residual or principle components. This could be tedious and often impossible for a large process. In this paper, PCA scheme is combined with the FCM-based fault diagnostic algorithm to enhance the diagnostic results. The implementation of the FCM-based fault diagnostic system by using PCA is done and its application is illustrated on the two-tank system.

Design of fault diagnostic system by using extended fuzzy cognitive map (확장된 퍼지인식맵을 이용한 고장진단 시스템의 설계)

  • 이쌍윤;김성호;주영훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.860-863
    • /
    • 1997
  • FCM(Fuzzy Cognitive Map) is a fuzzy signed directed graph for representing causal reasoning which has fuzziness between causal concepts. Authors have already proposed FCM-based fault diagnostic scheme. However, the previously proposed scheme has the problem of lower diagnostic resolution. In order to improve the diagnostic resolution, a new diagnostic scheme based on extended FCM which incorporates the concept of fuzzy number into FCM is developed in this paper. Furthermore, an enhanced TAM(Temporal Associative Memory) recall procedure and pattern matching scheme are also proposed.

  • PDF

The Effect of the Fault Tolerant Capability due to Degradation of the Self-diagnostics Function in the Safety Critical System for Nuclear Power Plants (원자력발전소 안전필수시스템 고장허용능력에 대한 자가진단기능 저하 영향 분석)

  • Hur, Seop;Hwang, In-Koo;Lee, Dong-Young;Choi, Heon-Ho;Kim, Yang-Mo;Lee, Sang-Jeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1456-1463
    • /
    • 2010
  • The safety critical systems in nuclear power plants should be designed to have a high level of fault tolerant capability because those systems are used for protection or mitigation of the postulated accidents of nuclear reactor. Due to increasing of the system complexity of the digital based system in nuclear fields, the reliability of the digital based systems without an auto-test or a self-diagnostic feature is generally lower than those of analog system. To overcome this problem, additional redundant architectures in each redundant channel and self-diagnostic features are commonly integrated into the digital safety systems. The self diagnostic function is a key factor for increasing fault tolerant capabilities in the digital based safety system. This paper presents an availability and safety evaluation model to analyze the effect to the system's fault tolerant capabilities depending on self-diagnostic features when the loss or erroneous behaviors of self-diagnostic function are expected to occur. The analysis result of the proposed model on the several modules of a safety platform shows that the improvement effect on unavailability of each module has generally become smaller than the result of usage of conventional models and the unavailability itself has changed significantly depending on the characteristics of failures or errors of self-diagnostic function.

Intelligent Data Reduction Algorithm for Sensor Network based Fault Diagnostic System

  • Youk, Yui-Su;Kim, Sung-Ho;Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.301-308
    • /
    • 2009
  • In the modern life, machines are used for various areas in industries as the advance of science and industrial development has proceeded. In many machines, the rotating machines play an important role in many processes. Therefore, the development of fault diagnosis and monitoring system for rotating machines is required. An ubiquitous sensor network (USN) is a combination of the key computer science and engineering area technology including the wireless network, embedded system hardware and software, communication, real-time system, etc. It collects environmental information to realize a variety of functions. In this work, a data reduction algorithm for USN based remote fault diagnostic system which can be easily applied to previously built factories is proposed. To verify the feasibility of the proposed scheme, some simulations and experiments are executed.

Development of the Fault Diagnostic System on the Rotating Machinery Using Vibration Signal (진동 신호를 이용한 회전기기 고장 진단 시스템의 개발)

  • Lee Choong-Hwi;Sim Hyoun Jin;Oh Jae-Eung;Yoon Lee Jng
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.75-83
    • /
    • 2004
  • With the rotating machinery getting more accurate and diversified, the necessity fur an appropriate diagnosis technique and maintenance system has been greatly recognized. However, until now, the operator has executed a monitoring of the machine by the senses or simple the change of RMS (root mean Square) value. So, the diagnostic expert system using the fuzzy inference which the operator can judge easily and expertly a condition of the machine is developed through this study. In this paper, the hardware and software of the diagnostic expert system was composed and the identification of the diagnostic performance of the developed system for 5 fault phenomena was carried out.

Review of expert system applications to chemical process fault diagnosis (화학공정 결함진단을 위한 전문가 시스템 적용에 관한 고찰)

  • 오전근;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.674-679
    • /
    • 1987
  • Process failures can occur at any time during operation, so a continuous effort of fault detection, diagsis, and correction is required. Expert system paridigm has been regarded as a promising approach to real time process supervisory control especially to fault diagnosis. The most important aspects of fault diagnostic expert systems(FDES) are the problem-solving inference strategy and knowledge organizations. The necessity of FDES, the nature of diagnostic knowledge, the representation of knowledge, and the inference mechanism of FDES, et al. are described, which are announced by previous researchers. And the existing FDES are categorized and critically reviewed in this work.

  • PDF

Design of High Efficient Fault Diagnostic System by Using Fuzzy Concept (퍼지개념을 이용한 고성능 고장진단 시스템의 설계)

  • 이쌍윤;김성호;권오신;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.247-251
    • /
    • 1997
  • FCM(Fuzzy Cognitive Map) is a fuzzy signed directed graph for representing causal reasoning which has fuzziness between causal concepts. Authors have already proposed FCM-based fault diagnostic scheme and verified its usefulness. However, the previously proposed scheme has the problem of lower diagnostic resolution as in the case of other qualitative approaches. In order to improve the diagnostic resolution, a concept of fuzzy number is introduced into the basic FCM-based fault diagnostic algorithm. By incorporation the fuzzy number into fault FCM models, quantitative information such as the transfer gain between the state variables can be effectively utilized for better diagnostic resolution. Furthermore, an enhanced TAM(Temporal Associative Memory) recall procedure and modified and modified pattern matching scheme are also proposed.

  • PDF