• Title/Summary/Keyword: fault detection & diagnosis

Search Result 461, Processing Time 0.024 seconds

An Open Circuit Fault Diagnostic Technique in IGBTs for AC to DC Converters Applied in Microgrid Applications

  • Khomfoi, Surin;Sae-Kok, Warachart;Ngamroo, Issarachai
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.801-810
    • /
    • 2011
  • An open circuit fault diagnostic method in IGBTs for the ac to dc converters used in microgrid applications is developed in this paper. An ac to dc converter is a key technology for microgrids in order to interface both distributed generation (DG) and renewable energy resources (RES). Also, highly reliable ac to dc converters are necessary to keep converters in continuous operation as long as possible during power switch fault conditions. Therefore, the proposed fault diagnostic method is developed to reduce the fault detection time and to avoid any other fault alarms because continuous operation is desired. The proposed diagnostic method is a combination of the absolute normalized dc current technique and the false alarm suppression algorithm to overcome the long fault detection time and fault alarm problems. The simulation and experimental results show that the developed fault diagnostic method can perform fault detection within about one cycle. The results illustrate that the reliability of an ac to dc converter interfaced with a microgrid can be improved by using the proposed fault diagnostic method.

A Study on Fault Diagnosis of Boiler Tube Leakage based on Neural Network using Data Mining Technique in the Thermal Power Plant (데이터마이닝 기법을 이용한 신경망 기반의 화력발전소 보일러 튜브 누설 고장 진단에 관한 연구)

  • Kim, Kyu-Han;Lee, Heung-Seok;Jeong, Hee-Myung;Kim, Hyung-Su;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1445-1453
    • /
    • 2017
  • In this paper, we propose a fault detection model based on multi-layer neural network using data mining technique for faults due to boiler tube leakage in a thermal power plant. Major measurement data related to faults are analyzed using statistical methods. Based on the analysis results, the number of input data of the proposed fault detection model is simplified. Then, each input data is clustering with normal data and fault data by applying K-Means algorithm, which is one of the data mining techniques. fault data were trained by the neural network and tested fault detection for boiler tube leakage fault.

Fault Detection and Diagnosis Systems of Induction Machines using Real-Time Stochastic Modeling Approach (실시간 확률 모델링 기법을 이용한 유도기기의 고장검출 및 진단시스템)

  • Lee, Jin-Woo;Kim, Kwang-Soo;Cho, Hyun-Cheol;Lee, Young-Jin;Lee, Kwon-Soon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.241-248
    • /
    • 2009
  • This paper presents stochastic methodology based fault detection algorithm for induction motor systems. We measure current of healthy induction motors by means of hall sensor systems and then establish its probability distribution. We propose online probability density estimation which is effective in real-time implementation due to its simplicity and low computational burden. In addition, we accomplish theoretical analysis of the proposed estimation to demonstrate its convergence property by using statistical convergence and system stability theories. We apply our fault detection approach to three-phase induction motors and achieve real-time experiment for evaluating its reliability and practicability in industrial fields.

Fault Detection of the Cylindrical Plunge Grinding Process by Using the Parameters of AE Signals

  • Kwak, Jae-Seob;Song, Ji-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.773-781
    • /
    • 2000
  • The focus of this study is the development of a credible fault detection system of the cylindrical plunge grinding process. The acoustic emission (AE) signals generated during machining were analyzed to determine the relationship between grinding-related faults and characteristics of changes in signals. Furthermore, a neural network, which has excellent ability in pattern classification, was applied to the diagnosis system. The neural network was optimized with a momentum coefficient, a learning rate, and a structure of the hidden layer in the iterative learning process. The success rates of fault detection were verified.

  • PDF

Partial Fault Detection of Air-conditioning System by Neural Network Algorithm using Data Preprocessing Method (데이터 전처리기법을 적용한 신경망 알고리즘의 냉방기 부분고장 검출)

  • 한도영;이한홍;윤태훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.560-566
    • /
    • 2002
  • The fault detection and diagnosis technology may be applied in order to decrease the energy consumption and the maintenance cost of the air-conditioning system. In this study, two different types of faults in the air-conditioning system, such as the condenser fouling and the evaporator fan slowdown, were considered. The neural network algorithm combined with data preprocessor was developed and applied to detect the faults of the real system. Test results show that this method is very effective to detect the faults in the air-conditioning system. Therefore, this developed method can be used for the development of the air-conditioner fault detection system.

A precise sensor fault detection technique using statistical techniques for wireless body area networks

  • Nair, Smrithy Girijakumari Sreekantan;Balakrishnan, Ramadoss
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.31-39
    • /
    • 2021
  • One of the major challenges in wireless body area networks (WBANs) is sensor fault detection. This paper reports a method for the precise identification of faulty sensors, which should help users identify true medical conditions and reduce the rate of false alarms, thereby improving the quality of services offered by WBANs. The proposed sensor fault detection (SFD) algorithm is based on Pearson correlation coefficients and simple statistical methods. The proposed method identifies strongly correlated parameters using Pearson correlation coefficients, and the proposed SFD algorithm detects faulty sensors. We validated the proposed SFD algorithm using two datasets from the Multiparameter Intelligent Monitoring in Intensive Care database and compared the results to those of existing methods. The time complexity of the proposed algorithm was also compared to that of existing methods. The proposed algorithm achieved high detection rates and low false alarm rates with accuracies of 97.23% and 93.99% for Dataset 1 and Dataset 2, respectively.

Neural-network-based Fault Detection and Diagnosis Method Using EIV(errors-in variables) (EIV를 이용한 신경회로망 기반 고장진단 방법)

  • Han, Hyung-Seob;Cho, Sang-Jin;Chong, Ui-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1020-1028
    • /
    • 2011
  • As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying artificial neural network. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes a neural-network-based fault diagnosis system using AR coefficients as feature vectors by LPC(linear predictive coding) and EIV(errors-in variables) analysis. We extracted feature vectors from sound, vibration and current faulty signals and evaluated the suitability of feature vectors depending on the classification results and training error rates by changing AR order and adding noise. From experimental results, we conclude that classification results using feature vectors by EIV analysis indicate more than 90 % stably for less than 10 orders and noise effect comparing to LPC.

A Realization of Real Time Algorithm for Fault and Health Diagnosis of Turbofan Engine Components (터보팬엔진의 실시간 구성품 결함 및 건전성 진단 알고리즘 구현)

  • Han, Dong-Ju;Kim, Sang-Jo;Lee, Soo-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.717-727
    • /
    • 2022
  • An algorithm is realized for estimating the component fault and health diagnosis such as a deterioration. Based on the turbofan engine health diagnosis model, from the health parameters which are estimated by a real time tracking filter, the outliers are eliminated efficiently by an effective median filter to minimize an false alarm. The difference between the fault and deterioration trends is identified by the detection measure for abrupt change, thereby the clear diagnosis classifying the fault and the health condition is possible. The effectiveness of the algorithm for fault and health diagnosis is verified from the simulated results of engine component faults and deterioration.

Development of a Fault Diagnosis Model for PEM Water Electrolysis System Based on Simulation (시뮬레이션 기반 PEM 수전해 시스템 고장 진단 모델 개발)

  • TEAHYUNG KOO;ROCKKIL KO;HYUNWOO NOH;YOUNGMIN SEO;DONGWOO HA;DAEIL HYUN;JAEYOUNG HAN
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.5
    • /
    • pp.478-489
    • /
    • 2023
  • In this study, fault diagnosis and detection methods developed to ensure the reliability of polymer electrolyte membrane (PEM) hydrogen electrolysis systems have been proposed. The proposed method consists of model development and data generation of the PEM hydrogen electrolysis system, and data-driven fault diagnosis learning model development. The developed fault diagnosis learning model describes how to detect and classify faults in the sensors and components of the system.

A Study on fault diagnosis of DC transmission line using FPGA (FPGA를 활용한 DC계통 고장진단에 관한 연구)

  • Tae-Hun Kim;Jun-Soo Che;Seung-Yun Lee;Byeong-Hyeon An;Jae-Deok Park;Tae-Sik Park
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.601-609
    • /
    • 2023
  • In this paper, we propose an artificial intelligence-based high-speed fault diagnosis method using an FPGA in the event of a ground fault in a DC system. When applying artificial intelligence algorithms to fault diagnosis, a substantial amount of computation and real-time data processing are required. By employing an FPGA with AI-based high-speed fault diagnosis, the DC breaker can operate more rapidly, thereby reducing the breaking capacity of the DC breaker. therefore, in this paper, an intelligent high-speed diagnosis algorithm was implemented by collecting fault data through fault simulation of a DC system using Matlab/Simulink. Subsequently, the proposed intelligent high-speed fault diagnosis algorithm was applied to the FPGA, and performance verification was conducted.