• Title/Summary/Keyword: fault detection & diagnosis

Search Result 461, Processing Time 0.028 seconds

Stochastic Model based Fault Diagnosis System of Induction Motors using Online Probability Density Estimation (온라인 확률분포 추정기법을 이용한 확률모델 기반 유도전동기의 고장진단 시스템)

  • Cho, Hyun-Cheol;Kim, Kwang-Soo;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1847-1853
    • /
    • 2008
  • This paper presents stochastic methodology based fault detection algorithm for induction motor systems. We measure current of healthy induction motors by means of hall sensor systems and then establish its probability distribution. We propose online probability density estimation which is effective in real-time implementation due to its simplicity and low computational burden. In addition, we accomplish theoretical analysis to demonstrate convergence property of the proposed estimation by using statistical convergence and system stability theory. We apply our fault diagnosis approach to three-phase induction motors and achieve real-time experiment for evaluating its reliability and practicability in industrial fields.

Model based Fault Detection and Diagnosis of Induction Motors using Probability Density Estimation (확률분포추정기법을 이용한 유도전동기의 모델기반 고장진단 알고리즘 개발)

  • Kim, Kwang-Su;Lee, Young-Jin;Song, Xian-Hui;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2008.04b
    • /
    • pp.171-173
    • /
    • 2008
  • This paper presents stochastic methodology based fault diction and diagnosis algorithm for induction motor systems. First, we construct probability distribution model from healthy motors and then probability distribution for faulty motors is recursively calculated by means of the proposed probability estimation. We measure motor current with hall sensors as system state. The estimated probability is compared to the model to generate a residue signal which is utilized for fault detection and diagnosis, that is, where a fault is occurred. We carry out real-time induction motor experiment to evaluate efficiency and reliability of the proposed approach.

  • PDF

Model based Fault Detection and Diagnosis of Induction Motors using Online Probability Density Estimation (온라인 확률추정기법을 이용한 모델기반 유도전동기의 고장진단 알고리즘 연구)

  • Kim, Kwang-Su;Lee, Young-Jin;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1503-1504
    • /
    • 2008
  • This paper presents stochastic methodology based fault diction and diagnosis algorithm for induction motor systems. First, we construct probability distribution model from healthy motors and then probability distribution for faulty motors is recursively calculated by means of the proposed probability estimation. We measure motor current with hall sensors as system state. The estimated probability is compared to the model to generate a residue signal which is utilized for fault detection and diagnosis, that is, where a fault is occurred. We carry out real-time induction motor experiment to evaluate efficiency and reliability of the proposed approach.

  • PDF

Current and Force Sensor Fault Detection Algorithm for Clamping Force Control of Electro-Mechanical Brake (Electro-Mechanical Brake의 클램핑력 제어를 위한 전류 및 힘 센서 고장 검출 알고리즘 개발)

  • Han, Kwang-Jin;Yang, I-Jin;Huh, Kun-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1145-1153
    • /
    • 2011
  • EMB (Electro-Mechanical Brake) systems can provide improved braking and stability functions such as ABS, EBD, TCS, ESC, BA, ACC, etc. For the implementation of the EMB systems, reliable and robust fault detection algorithm is required. In this study, a model-based fault detection algorithm is designed based on the analytical redundancy method in order to monitor current and force sensor faults in EMB systems. A state-space model for the EMB is derived including faulty signals. The fault diagnosis algorithm is constructed using the analytical redundancy method. Observer is designed for the EMB and the fault detectability condition is examined based on the residual analysis. The performance of the proposed model-based fault detection algorithm is verified in simulations. The effectiveness of the proposed algorithm is demonstrated in various faulty cases.

Diagnosis of Poor Contact Fault in the Power Cable Using SSTDR (SSTDR을 이용한 케이블의 접촉 불량 고장 진단)

  • Kim, Taek-Hee;Jeon, Jeong-Chay
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1442-1449
    • /
    • 2016
  • This paper proposes a diagnosis to detecting poor contact fault and fault location. Electrical fire by poor contact fault of power cable occupied a large proportion in the total electrical installations. The proposed method has an object to prevent electrical fault in advance. But detecting poor contact fault is difficult to detect fault type and fault location by using conventional reflectometry due to faults generated intermittently and repeatedly on the time change. Therefore, in this paper poor contact fault and fault conditions were defined. System generating poor contact fault produced for the experimental setup. SSTDR and algorithm of reference signal elimination heighten performance detecting poor contact fault on live power cable. The diagnosis methods of signal process and analysis of reflected signal was proposed for detecting poor contact fault and fault location. The poor contact fault and location had been detected through proposed diagnosis methods. The fault location and error rate of detection were verified detecting accuracy by experiment results.

Fault Diagnosis in Semiconductor Etch Equipment Using Bayesian Networks

  • Nawaz, Javeria Muhammad;Arshad, Muhammad Zeeshan;Hong, Sang Jeen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.252-261
    • /
    • 2014
  • A Bayesian network (BN) based fault diagnosis framework for semiconductor etching equipment is presented. Suggested framework contains data preprocessing, data synchronization, time series modeling, and BN inference, and the established BNs show the cause and effect relationship in the equipment module level. Statistically significant state variable identification (SVID) data of etch equipment are preselected using principal component analysis (PCA) and derivative dynamic time warping (DDTW) is employed for data synchronization. Elman's recurrent neural networks (ERNNs) for individual SVID parameters are constructed, and the predicted errors of ERNNs are then used for assigning prior conditional probability in BN inference of the fault diagnosis. For the demonstration of the proposed methodology, 300 mm etch equipment model is reconstructed in subsystem levels, and several fault diagnosis scenarios are considered. BNs for the equipment fault diagnosis consists of three layers of nodes, such as root cause (RC), module (M), and data parameter (DP), and the constructed BN illustrates how the observed fault is related with possible root causes. Four out of five different types of fault scenarios are successfully diagnosed with the proposed inference methodology.

Fault Detection and Diagnosis of Winding Short in BLDC Motors Based on Fuzzy Similarity

  • Bae, Hyeon;Kim, Sung-Shin;Vachtsevanos, George
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.2
    • /
    • pp.99-104
    • /
    • 2009
  • The turn-to-turn short is one major fault of the motor faults of BLDC motors and can appear frequently. When the fault happens, the motor can be operated without breakdown, but it is necessary to maintain the motor for continuous working. In past research, several methods have been applied to detect winding faults. The representative approaches have been focusing on current signals, which can give important information to extract features and to detect faults. In this study, current sensors were installed to measure signals for fault detection of BLDC motors. In this study, the Park's vector method was used to extract the features and to isolate the faults from the current measured by sensors. Because this method can consider the three-phase current values, it is useful to detect features from one-phase and three-phase faults. After extracting two-dimensional features, the final feature was generated by using the two-dimensional values using the distance equation. The values were used in fuzzy similarity to isolate the faults. Fuzzy similarity is an available tool to diagnose the fault without model generation and the fault was converted to the percentage value that can be considered as possibility of the fault.

Wire Rope Fault Detection using Probability Density Estimation (확률분포추정기법을 이용한 와이어로프의 결함진단)

  • Jang, Hyeon-Seok;Lee, Young-Jin;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1758-1764
    • /
    • 2012
  • A large number of wire rope has been used in various inderstiries as Cranes and Elevators from expanding the scale of the industrial market. But now, the management of wire rope is used as manually operated by rope replacement from over time or after the accident.It is caused to major accidents as well as economic losses and personal injury. Therefore its time to need periodic fault diagnosis of wire rope or supply of real-time monitoring system. Currently, there are several methods has been reported for fault diagnosis method of the wire rope, to find out the feature point from extracting method is becoming more common compared to time wave and model-based system. This method has implemented a deterministic modeling like the observer and neural network through considering the state of the system as a deterministic signal. However, the out-put of real system has probability characteristics, and if it is used as a current method on this system, the performance will be decreased at the real time. And if the random noise is occurred from unstable measure/experiment environment in wire rope system, diagnostic criterion becomes unclear and accuracy of diagnosis becomes blurred. Thus, more sophisticated techniques are required rather than deterministic fault diagnosis algorithm. In this paper, we developed the fault diagnosis of the wire rope using probability density estimation techniques algorithm. At first, The steady-state wire rope fault signal detection is defined as the probability model through probability distribution estimate. Wire rope defects signal is detected by a hall sensor in real-time, it is estimated by proposed probability estimation algorithm. we judge whether wire rope has defection or not using the error value from comparing two probability distribution.

Failure Detection Method of Industrial Cartesian Coordinate Robots Based on a CNN Inference Window Using Ambient Sound (음향 데이터를 이용한 CNN 추론 윈도우 기반 산업용 직교 좌표 로봇의 고장 진단 기법)

  • Hyuntae Cho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.57-64
    • /
    • 2024
  • In the industrial field, robots are used to increase productivity by replacing labors with dangerous, difficult, and hard tasks. However, failures of individual industrial robots in the entire production process may cause product defects or malfunctions, and may cause dangerous disasters in the case of manufacturing parts used in automobiles and aircrafts. Although requirements for early diagnosis of industrial robot failures are steadily increasing, there are many limitations in early detection. This paper introduces methods for diagnosing robot failures using sound-based data and deep learning. This paper also analyzes, compares, and evaluates the performance of failure diagnosis using various deep learning technologies. Furthermore, in order to improve the performance of the fault diagnosis system using deep learning technology, we propose a method to increase the accuracy of fault diagnosis based on an inference window. When adopting the inference window of deep learning, the accuracy of the failure diagnosis was increased up to 94%.

Fault Diagnosis Algorithm for Linear Dynamic System (선형동적 시스템에서의 고장진단 알고리즘)

  • Moon, Bong Chae;Kim, Jee Hong;Kim, Byung Kook;Bien, Zeungnam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.874-880
    • /
    • 1986
  • A new diagnastic method for detection and location of faults in a linear time-invariant system is proposed. The fault detection algorithm is formulated in a signal space, while the fault location algorithm with estimation is done in a parameter space. In a way different from the conventional approach, the method of fault location with estimation is studied to apply the new concept to establish the models with an unknown parameter under the assumption of 1-fold fault. According to computer simulation, the proposed diagnostic method is effective as an algorithm for fault diagnosis of industdrial process controllers.

  • PDF