• Title/Summary/Keyword: fault current characteristics

Search Result 607, Processing Time 0.026 seconds

Current Limiting Characteristics of a Resistive SFCL for a Single-line-to-ground Fault in the 22.9 kV System (1선 지락사고에 대한 배전급 저항형 초전도 한류기의 전류제한특성)

  • 최효상;황시돌;현옥배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.505-510
    • /
    • 2001
  • We simulated the current limiting characteristics of a resistive superconducting fault current limiter (SFCL) for a single line-to-ground fault in the 22.9 kV system. The transient current during the fault increased to 6.33 kA, 5.80 kA and 3.71 kA without SFCL at the fault angles 0$^{\circ}$, 45$^{\circ}$ and 90$^{\circ}$, respectively, a resistive SFCL limited effectively the fault current to 2.27 kA in a half cycle without any DC components. The maximum quench resistance of an SFCL, 16Ω was suggested to be appropriate to limit the fault current in the 22.9 kV distribution system, considering the operating cooperation of a protective relay and the current limiting performance of an SFCL.

  • PDF

Analysis for Variation of Limiting Current at Initial Fault Time in Flux-Lock Type SFCL (자속구속형 고온초전도 전류제한기의 사고초기 제한 전류변화 분석)

  • Lim, Sung-Hun;Choi, Hyo-Sang;Gang, Hyeong-Gon;Ko, Seok-Cheol;Lee, Jong-Hwa;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.418-420
    • /
    • 2003
  • The fault current limiting characteristics at the initial fault time for flux-lock type high-Tc superconducting fault current limiter(SFCL) were investigated. The amplitude of initial fault current of the flux-lock type SFCL was dependent on the inductance ratio of coil 1 and 2. After fault current limiting mode was analyzed, we compared the calculated value with the experimental one for the initial fault current. The effect of initial fault current due to the inductance ratio of coil 1 and 2 on fault current limiting characteristics was discussed.

  • PDF

Transient Fault Current Limiting Characteristics of a Transformer Type SFCL Using an Additional Magnetically Coupled Circuit

  • Lim, Seung-Taek;Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.42-45
    • /
    • 2017
  • In this paper, a transformer type SFCL (superconducting fault current limiter) using an additional magnetically coupled circuit was suggested. Its transient fault current limiting characteristics, due to the winding direction of additional coupled circuit, were analyzed through fault current limiting tests. The suggested transformer type SFCL was composed of the primary winding, and one secondary winding wound on the same iron core together with an additional magnetically coupled circuit. That circuit consists of the other secondary winding together with the other SC (superconducting) element connected in parallel with its other secondary winding. As one of the effective design parameters to affect the transient fault current of the SFCL, the fault current limiting tests of the suggested SFCL were carried out considering the winding direction of its additional coupled circuit. It was confirmed that, through the analysis on the fault current tests of the SFCL, the quench sequence of two SC elements comprising the suggested SFCL could be adjusted by the winding direction of the additional coupled circuit.

Characteristics on the Transformer-Type SFCL According to Reclosing Operation the Voltage Increase (전압증가 시 재폐로 동작에 따른 변압기형 초전도 한류기의 특성 분석)

  • Choi, Soo-Geun;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.477-480
    • /
    • 2010
  • Fault current in power system is expected to increase by demand of power capacity. Therefore, when the fault occurred, fault current was increased in the power system. Many studies have been progressed to limit the fault current. Superconducting fault current limiter (SFCL) is one of them which has been studied in worldwide. In this paper, we will analyze characteristics of a transformer-type SFCL by reclosing operation when the voltage increases. Twice opening times in the reclosing of circuit breaker were set as the 0.5 and 15 seconds, respectively. Turn's number of primary and secondary coils set 4:2 and we increased voltages from 120V to 280V for each experiment. By the current waveform, maximum fault current in second and third cycles was lowered when the voltage was increased. In the recovery waveform, recovery time was increased as the voltage was increased. The reason was that power burden of the SFCL increased when consumption power was increased, so the time to get back to SFCL took longer. We compared the characteristics of a resistive-type and transformer-type SFCL. As a result, we found that the fault current of a transformer-type was lower than resistive-type and recovery time of the SFCL was shorter. Consequently, transformer-type SFCL was more profitable for limitation of fault current and recovery time under the same condition for reclosing operation.

Unbalanced Characteristics of the Superconducting Fault Current Limiters with a Single Line-to-ground Fault (1선 지락사고에 대한 초전도한류기의 불평형 특성)

  • Choi, Hyo-Sang;Lee, Na-Young;Lee, Sang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.851-855
    • /
    • 2005
  • We investigated the unbalanced characteristics of the superconducting fault current limiters (SFCLs) based on YBCO thin films with a single line-to-ground fault. When a single line-to-ground fault occurred, the short circuit current of a fault phase increased about 6 times of transport currents after the fault onset but was effectively limited to the designed current level within 2 ms by the resistance development of the SFCL. The fault currents of the sound phases almost did not change because of their direct grounding system. The unbalanced rates of a fault phase were distributed from 6.4 to 1.4. It was found that the unbalanced rates of currents were noticeably improved within one cycle after the fault onset. We calculated the zero phase currents for a single line-to-ground fault using the balanced component analysis. The positive sequence resistance was reduced remarkably right after the fault onset but eventually approached the balanced positive resistance component prior to the system fault. This means that the system reaches almost the three-phase balanced state in about 60 ms after the fault onset at the three-phase system.

Current Limiting Characteristics of Flux-Lock Type High-TC Superconducting Fault Current Limiter According to Fault Angles (사고각에 따른 자속구속형 전류제한기의 전류제한특성)

  • Park, Hyoung-Min;Lim, Sung-Hun;Cho, Yong-Sun;Park, Chung-Ryul;Han, Byoung-Sung;Choi, Hyo-Sang;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.12-14
    • /
    • 2004
  • We investigated current limiting characteristics of the flux-lock type high-Tc superconcting fault current limiter(HTSC-FCL) according to fault angles. The Flux-lock type HTSC-FCL consists of primary and the secondary copper coils that are wound in parallel each other through the iron core and YBCO thin flim. In this paper, the current limiting characteristics of the flux-lock type HTSC-FCL according to fault angles in case of the subtractive and additive polarity windings were compared and analyzed. From the results, the flux-lock type HTSC-FCL could limit more quickly fault current as the fault angles increased irrespective of the fault angles. On the other hand, the initial power burden of HTSC element after a fault happened increased as the fault angles increased. In addition, it was confirmed that the resistance of flux-lock type HTSC-FCL in case of subtractive polarity winding was more increased than that of additive polarity winding and that the peak current of fault current in case of subtractive polarity winding was larger than that of the additive polarity winding case.

  • PDF

Quench Characteristics of a Inductive Superconducting Fault Current Limiter (유도형 초전도사고전류제한기의 퀜치특성)

  • Choi, K.D.;Lee, S.J.;Kim, D.S.;Lee, J.K.;Kim, D.H.;Cha, G.S.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.114-116
    • /
    • 1994
  • Recently a superconducting fault current limiter(SFCL) has public attentions for the solution of large fault currents of power systems. Though a SFCL has more effective characteristics than the other current limiting devices, there are many problems to apply it to real power systems. For the analysis of transient fault characteristics of the SFCL, we designed and fabricated a inductive SFCL and tested it in 35V line. The superconducting cable of the SFCL was quenched at lower current(49A) than the designed critical current but it limited the fault current to the lower value(150A) than the one expected without SFCL(250A). And within one period the fault current decreased lower than normal laod current.

  • PDF

Analysis on Current Limiting and Voltage Sag Compensating Characteristics of a SFCL using Magnetic Coupling of Parallel Connected Two Coils (병렬연결된 두 코일의 자기결합을 이용한 초전도 전류제한기의 전류제한 및 전압강하 보상 특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.159-163
    • /
    • 2010
  • The superconducting fault current limiter (SFCL) plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the SFCL using magnetic coupling of two coils with parallel connection has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. In this paper, the current limiting and the voltage sag compensating characteristics of a SFCL using magnetic coupling of parallel connected two coils were analyzed. Through the analysis on the experimental results considering the winding direction of two coils, the SFCL designed with the additive polarity winding was shown to have the higher limited fault current than the SFCL designed with the subtractive polarity winding. In addition, it could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.

Analysis on Current Limiting Characteristics of Series Connection-type SFCL with Two Magnetically Coupled Circuits Applied into a Simulated Power System (모의전력계통에 적용된 두 개의 자기결합 회로를 갖는 직렬연결형 초전도 전류제한기의 전류제한 특성 분석)

  • Ko, Seok-Cheol;Lee, Shin-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.68-72
    • /
    • 2013
  • The series connection-type superconducting fault current limiter (SFCL) with two magnetically coupled circuits was suggested and its effectiveness through the analysis on the current limiting and recovery characteristics was described. The fault current limiting characteristics of the proposed SFCL as well as the load voltage sag compensating characteristics according to the winding direction were investigated. To confirm the fault current limiting and the voltage sag suppressing characteristics of the this SFCL, the short-circuit tests for the simulated power system with the series connection-type SFCL were carried out. The series connection-type SFCL designed with the additive polarity winding was shown to perform more effective fault current limiting and load voltage sag compensating operations through the fast quench occurrence right after the fault appears and the fast recovery operation after the fault removes than that with the subtractive polarity winding.