• 제목/요약/키워드: fault current

검색결과 2,111건 처리시간 0.021초

저항형초전도한류기 과도특성을 고려한 EMTDC 모델개발 (Development of EMTDC model for Resistance type Fault Current Limiter considering transient characteristic)

  • 윤재영;김종율;이승렬
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권2호
    • /
    • pp.1-7
    • /
    • 2003
  • Nowadays, one of the serious problems in KEPCO(Korea Electric Power Co-Operation) system is the more higher fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(High Voltage Direct Current-Back to Back) and FCL(fault current limiter). But, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor -Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC(Electro-Magnetic Transient Direct Current) model for resistance type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching phenomena occur.

전류분배계수를 사용하는 병행 2회선 송전선로 고장점 표정 알고리즘 (Current Distribution Factor Based Fault Location Algorithms for Double-circuit Transmission Lines)

  • 안용진;강상희;최면송;이승재
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권3호
    • /
    • pp.146-152
    • /
    • 2001
  • This paper describes an accurate fault location algorithm based on sequence current distribution factors for a double-circuit transmission system. The proposed method uses the voltage and current collected at only the local end of a single-circuit. This method is virtually independent of the fault resistance and the mutual coupling effect caused by the zero-sequence current of the adjacent parallel circuit and insensitive to the variation of source impedance. The fault distance is determined by solving the forth-order KVL(Kirchhoff's Voltage Law) based distance equation. The zero-sequence current of adjacent circuit is estimated by using a zero-sequence current distribution factor and the zero-sequence current of the self-circuit. Thousands of fault simulation by EMTP have proved the accuracy and effectiveness of the proposed algorithm.

  • PDF

유도형 초전도사고전류제한기의 퀜치특성 (Quench Characteristics of a Inductive Superconducting Fault Current Limiter)

  • 최경달;이상진;김동수;이지광;김동훈;차귀수;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.114-116
    • /
    • 1994
  • Recently a superconducting fault current limiter(SFCL) has public attentions for the solution of large fault currents of power systems. Though a SFCL has more effective characteristics than the other current limiting devices, there are many problems to apply it to real power systems. For the analysis of transient fault characteristics of the SFCL, we designed and fabricated a inductive SFCL and tested it in 35V line. The superconducting cable of the SFCL was quenched at lower current(49A) than the designed critical current but it limited the fault current to the lower value(150A) than the one expected without SFCL(250A). And within one period the fault current decreased lower than normal laod current.

  • PDF

Fault Current Limiting and Magnetizing Characteristics of the Autotransformer Type SFCL

  • Park, Min Ki;Lim, Sung Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권3호
    • /
    • pp.159-162
    • /
    • 2017
  • In designing the autotransformer type superconducting fault-current limiter (SFCL), one must consider that the iron core can be saturated for the SFCL to have effective fault-current limiting operation. In this paper, to examine the saturation of the iron core comprising SFCL during the fault period, the linkage flux and the magnetizing current of the SFCL were derived from the electrical equivalent circuit with the nonlinear exciting branch. By analysis on the linkage flux versus the magnetizing current of the autotransformer type SFCL, calculated from the short-circuit tests, the design condition for the suppression of the iron core's saturation was discussed.

삼상 변압기와 전력용 스위치를 이용한 초전도 한류기의 과도특성 해석 (Analysis of Transient Characteristics of SFCL using the Three-Phase Transformer and Power Switch)

  • 정병익;최효상;박정일;조금배
    • 전기학회논문지
    • /
    • 제61권11호
    • /
    • pp.1743-1747
    • /
    • 2012
  • The research of superconducting fault current limiter (SFCL) for reduction of the fault current is actively underway in the worldwide. In this paper, we analyzed the characteristics of a SFCL using the transformer and superconducting elements combined mutually in accordance with the fault types. The structure of this SFCL was composed of the secondary and third windings of a transformer connected to the load and the superconducting element, respectively. The provided electric power flew into the load connected to the secondary winding of the transformer in normal state. On the other hand, when the fault occurred in power system, the fault current was limited by closing the line of third winding of the transformer. At this time, the effect of the fault was minimized by opening the fault line in secondary winding of a transformer in power system. The sensing of the fault state was performed by the current transformer(CT) and then turn-on and turn-off switching behavior of the secondary line in the transformer was performed by the silicon-controlled rectifier(SCR). As a result, the proposed SFCL limited the fault current within one-cycle efficiently. Also, the degradation of the superconducting element in the normal state was avoided.

재폐로 동작시 1선 지락사고에 따른 고속도 초전도 한류기의 특성 분석 (Analysis of Characteristics on the High-speed SFCL According to Single Line-ground-fault in the Reclosing Operation)

  • 정인성;정병익;최효상
    • 전기학회논문지
    • /
    • 제64권4호
    • /
    • pp.612-615
    • /
    • 2015
  • This paper proposed an high-speed superconducting fault current limiter (H-SFCL). The proposed H-SFCL functioned the initial fault current could be covered by the SFCL and the continued fault current after the one-cycle from fault occurrence could be controlled current-limiting-element of the normal conduction. To investigate the operation characteristics of the H-SFCL, a simulation power system was constructed, and a single line-to-ground fault was occurred. As a result, the H-SFCL limited the fault current by more than about 70%, and it was confirmed that the electric power burden was reduced compared to the SFCL that consisted only of superconductors.

Validation of Some Protection Guidelines for Neighboring Pipelines against Fault Currents from Power Transmission Tower

  • Lee, Seong-Min;Song, Hong-Seok;Kim, Young Geun
    • Corrosion Science and Technology
    • /
    • 제6권2호
    • /
    • pp.77-81
    • /
    • 2007
  • Fault current can be discharged from power transmission tower due to lightning or inadvertent contact of crane, etc. Pipelines in proximity to either the source of the ground fault or the substation grounding grid may provide convenient conductive path for the fault current to travel. Inappropriate measures to the neighboring pipelines against the fault current may cause severe damages to the pipes such as coating breakdown, arc burn, puncture, loss in wall thickness, or brittle heat-affected zone. Like inductive and conductive AC coupling, steadily induced fault current right after the coating breakdown can lead to corrosion of the pipeline. In this work, some protection guidelines against fault currents used in the field have been validated through the simulation and analytical method.

모선 분리 운영중인 전력계통에 초전도 한류기 적용 효과 및 영향에 관한 연구 (A Study on the Effect of Superconducting Fault Current Limiter in Power System with Separated Bus and Superconducting Fault Current Limiter)

  • 김명현;김진석;임성훈;김재철
    • 조명전기설비학회논문지
    • /
    • 제26권12호
    • /
    • pp.74-79
    • /
    • 2012
  • Currently, separated buses were increased to limit a fault currents in power transmission system. However, separated buses caused bad influences such as a decrease of reliability and stability. Superconducting fault current limiter (SFCL) was proposed to limit a fault current lately and that has many merits beside any other solutions. Therefore, we proposed the install of Superconducting fault current limiter (SFCL) in power transmission system with separated bus. And our proposal was verified by reliability of power system.

배전급 저항형 초전도 한류기의 전류제한특성에 대한 EMTDC 시뮬레이션 (Simulation for current limiting characteristics of a resistive SFCL in the 22.9 kV distribution system)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.268-271
    • /
    • 2000
  • We simulated the current limiting characteristics of a resistive SFCL with 16 ${\Omega}$ of resistance for a single line-to-ground fault in the 22.9 kV system. The transient current during the fault increased up to 6.33 kA, 5.80 kA and 3.71 kA without SFCL at the fault angles of 0${\circ}$,45${\circ}$ and 90${\circ}$, respectively. An resistive SFCL limited the fault current to 2.27 kA in a half cycle. The quench resistance of 16 ${\Omega}$ was suggested to be appropriate to limit the fault current in the 22.9 kV distribution system.

  • PDF

Design of HTS power cable with fault current limiting function

  • Kim, Dongmin;Kim, Sungkyu;Cho, Jeonwook;Kim, Seokho
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권1호
    • /
    • pp.7-11
    • /
    • 2020
  • As demand for electricity in urban areas increases, it is necessary to improve electric power stability by interconnecting neighboring substations and high temperature superconductor (HTS) power cables are considered as a promising option due to its large power capacity. However, the interconnection of substations reduces grid impedance and expected fault current is over 45 kA, which exceeds the capacity of a circuit breaker in Korean grid. To reduce the fault current below 45 kA, a HTS power cable having a fault current limiting (FCL) function is considered by as a feasible solution for the interconnection of substations. In this study, a FCL HTS power cable of 600 MVA/154 kV, transmission level class, is considered to reduce the fault current from 63 kA to less than 45 kA by generating an impedance over 1 Ωwhen the fault current is induced. For the thermal design of FCL HTS power cable, a parametric study is conducted to meet a required temperature limit and impedance by modifying the cable core from usual HTS power cables which are designed to bypass the fault current through cable former. The analysis results give a minimum cable length and an area of stainless steel former to suppress the temperature of cable below a design limit.