• Title/Summary/Keyword: fault classification

Search Result 307, Processing Time 0.028 seconds

A Design of Adaptive Fault Tolerant Control System (적응 FTCS의 설계)

  • Lee, Kee-Sang;Park, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.372-375
    • /
    • 1989
  • In this paper, a new FTCS with the ability to perform original control objective without considerable loss of control performance in the face of any fault is proposed. The FTCS is composed of two interacting units, Adaptive Controller Unit and Fault Detection/Classification, where ACU performs primary control objective with basic process information(I/O) and environmental information fed by FDU and where FDU detect and classify faults and make decision on remidial action by the use of information provided by ACU.

  • PDF

Fault Types-Classification Technique in Radial Distribution System Using Wavelet Transform (Wavelet 변환을 이용한 방사상식 배전계통에서의 고장판별에 관한 연구)

  • Kim, Kyoung-Ho;Kim, Nam-Yoel;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.488-490
    • /
    • 2001
  • It is important to catch or classify fault types by any detecting technique for distribution protection. This paper proposes the technique to classify the fault types using wavelet transform in radial distribution line. Modeling of the radial distribution line is simulated using PSCAD/EMTDC and wavelet transform is performed in the Matlab program.

  • PDF

Software Quality Prediction based on Defect Severity (결함 심각도에 기반한 소프트웨어 품질 예측)

  • Hong, Euy-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.73-81
    • /
    • 2015
  • Most of the software fault prediction studies focused on the binary classification model that predicts whether an input entity has faults or not. However the ability to predict entity fault-proneness in various severity categories is more useful because not all faults have the same severity. In this paper, we propose fault prediction models at different severity levels of faults using traditional size and complexity metrics. They are ternary classification models and use four machine learning algorithms for their training. Empirical analysis is performed using two NASA public data sets and a performance measure, accuracy. The evaluation results show that backpropagation neural network model outperforms other models on both data sets, with about 81% and 88% in terms of accuracy score respectively.

Integrating Fuzzy based Fault diagnosis with Constrained Model Predictive Control for Industrial Applications

  • Mani, Geetha;Sivaraman, Natarajan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.886-889
    • /
    • 2017
  • An active Fault Tolerant Model Predictive Control (FTMPC) using Fuzzy scheduler is developed. Fault tolerant Control (FTC) system stages are broadly classified into two namely Fault Detection and Isolation (FDI) and fault accommodation. Basically, the faults are identified by means of state estimation techniques. Then using the decision based approach it is isolated. This is usually performed using soft computing techniques. Fuzzy Decision Making (FDM) system classifies the faults. After identification and classification of the faults, the model is selected by using the information obtained from FDI. Then this model is fed into FTC in the form of MPC scheme by Takagi-Sugeno Fuzzy scheduler. The Fault tolerance is performed by switching the appropriate model for each identified faults. Thus by incorporating the fuzzy scheduled based FTC it becomes more efficient. The system will be thereafter able to detect the faults, isolate it and also able to accommodate the faults in the sensors and actuators of the Continuous Stirred Tank Reactor (CSTR) process while the conventional MPC does not have the ability to perform it.

Induction Machine Fault Detection Using Generalized Feed Forward Neural Network

  • Ghate, V.N.;Dudul, S.V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.389-395
    • /
    • 2009
  • Industrial motors are subject to incipient faults which, if undetected, can lead to motor failure. The necessity of incipient fault detection can be justified by safety and economical reasons. The technology of artificial neural networks has been successfully used to solve the motor incipient fault detection problem. This paper develops inexpensive, reliable, and noninvasive NN based incipient fault detection scheme for small and medium sized induction motors. Detailed design procedure for achieving the optimal NN model and Principal Component Analysis for dimensionality reduction is proposed. Overall thirteen statistical parameters are used as feature space to achieve the desired classification. GFFD NN model is designed and verified for optimal performance in fault identification on experimental data set of custom designed 2 HP, three phase 50 Hz induction motor.

Fault Diagnosis of Three-Phase PWM Inverters Using Wavelet and SVM

  • Kim, Dong-Eok;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.377-385
    • /
    • 2009
  • In this paper, a diagnosis method for switch open-circuit faults in three-phase PWM inverters is proposed, which employs support vector machine (SVM) as classifying method. At first, a discrete wavelet transform (DWT) is used to detect a discontinuity of currents due to the fault, and then the features for fault diagnosis are extracted. Next, these features are employed as inputs for the SVM training. After training, the SVM produces an optimized boundary which is used identifying the fault. Finally, the fault classification is performed online with instantaneous features. The experimental results have verified the validity of the proposed estimation algorithm.

Research Status on Machine Learning for Self-Healing of Mobile Communication Network (이동통신망 자가 치유를 위한 기계학습 연구동향)

  • Kwon, D.S.;Na, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.30-42
    • /
    • 2020
  • Unlike in previous generations of mobile technology, machine learning (ML)-based self-healing research trend are currently attracting attention to provide high-quality, effective, and low-cost 5G services that need to operate in the HetNets scenario where various wireless transmission technologies are added. Self-healing plays a vital role in detecting and mitigating the faults, and confirming that there is still room for improvement. We analyzed the research trend in self-healing framework and ML-based fault detection, fault diagnosis, and fault compensation. We propose that to ensure that self-healing is a proactive instead of being reactive, we have to design an ML-based self-healing framework and select a suitable ML algorithm for fault detection, diagnosis, and outage compensation.

Development of Neuro-Fuzzy-Based Fault Diagnostic System for Closed-Loop Control system (페푸프 제어 시스템을 위한 퍼지-신경망 기방 고장 진단 시스템의 개발)

  • Kim, Seong-Ho;Lee, Seong-Ryong;Gang, Jeong-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.494-501
    • /
    • 2001
  • In this paper an ANFIS(Adativo Neuro-Fuzzy Inference System)- based fault detection and diagnosis for a closed loop control system is proposed. The proposed diagnostic system contains two ANFIS. One is run as a parallel model within the model in closed loop control(MCL) and the other is run as a series-parallel model within the process in closed loop(PCL) for the generation of relevant symptoms for fault diagnosis. These symptoms are further processed by another classification logic with simple rules and neural network for process and controller fault diagnosis. Experimental results for a DC shunt motor control system illustrate the effectiveness of the proposed diagnostic scheme.

  • PDF

Fault Detection and Diagnosis of an Agitator Using the Wavelet Transform (웨이브렛 변환을 이용한 교반기의 고장감지 및 진단)

  • 서동욱;전도영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.851-855
    • /
    • 2002
  • This paper proposes a method of fault detection and diagnosis of agitators based on the wavelet analysis of the current and vibration signals. The wavelet transform has received considerable interest in the fields of acoustics, communication, image compression, vision. and seismic since it provides the fast and effective means of analyzing signals recorded during operation. Neural network is used to diagnose the fault. Specifically, the proposed approach consists of (i) fault detection, (ii) feature extraction, and (iii) classification of fault types. The results show an effective application of the wavelet analysis on the monitoring of an agitator.

A Fault Classification and Direction Estimation Algorithm by Neural Network (신경회로망을 이용한 송전선로 보호용 방향 개전 및 고장상 선택 알고리즘)

  • Choi, Chang-Youl;Lee, Myoung-Soo;Lee, Jae-Gyu;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.332-334
    • /
    • 2003
  • The direction and the type of a fault on a transmission line needs to be identified rapidly and correctly. This paper presents a approach to identify fault direction and type with neural network on double circuit transmission line. A neural network based on self organization map(SOM) provides the ability to accurately classify the fault type and to select of a fault direction. In this paper, proposed algorithm uses different patterns of the associated voltages and currents in order to identify fault clusters.

  • PDF