• 제목/요약/키워드: fault classification

검색결과 307건 처리시간 0.025초

Fault Diagnosis of Low Speed Bearing Using Support Vector Machine

  • Widodo, Achmad;Son, Jong-Duk;Yang, Bo-Suk;Gu, Dong-Sik;Choi, Byeong-Keun;Kim, Yong-Han;Tan, Andy C.C;Mathew, Joseph
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.891-894
    • /
    • 2007
  • This study presents fault diagnosis of low speed bearing using support vector machine (SVM). The data used in the experiment was acquired using acoustic emission (AE) sensor and accelerometer. The aim of this study is to compare the performance of fault diagnosis based on AE signal and vibration signal with same load and speed. A low speed test rig was developed to simulate various defects with shaft speeds as low as 10 rpm under several loading conditions. In this study, component analysis was also performed to extract the feature and reduce the dimensionality of original data feature. Moreover, the classification for fault diagnosis was also conducted using original data feature without feature extraction. The result shows that extracted feature from AE sensor gave better performance in faults classification.

  • PDF

Inter-Process Correlation Model based Hybrid Framework for Fault Diagnosis in Wireless Sensor Networks

  • Zafar, Amna;Akbar, Ali Hammad;Akram, Beenish Ayesha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.536-564
    • /
    • 2019
  • Soft faults are inherent in wireless sensor networks (WSNs) due to external and internal errors. The failure of processes in a protocol stack are caused by errors on various layers. In this work, impact of errors and channel misbehavior on process execution is investigated to provide an error classification mechanism. Considering implementation of WSN protocol stack, inter-process correlations of stacked and peer layer processes are modeled. The proposed model is realized through local and global decision trees for fault diagnosis. A hybrid framework is proposed to implement local decision tree on sensor nodes and global decision tree on diagnostic cluster head. Local decision tree is employed to diagnose critical failures due to errors in stacked processes at node level. Global decision tree, diagnoses critical failures due to errors in peer layer processes at network level. The proposed model has been analyzed using fault tree analysis. The framework implementation has been done in Castalia. Simulation results validate the inter-process correlation model-based fault diagnosis. The hybrid framework distributes processing load on sensor nodes and diagnostic cluster head in a decentralized way, reducing communication overhead.

A Hybrid Soft Computing Technique for Software Fault Prediction based on Optimal Feature Extraction and Classification

  • Balaram, A.;Vasundra, S.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.348-358
    • /
    • 2022
  • Software fault prediction is a method to compute fault in the software sections using software properties which helps to evaluate the quality of software in terms of cost and effort. Recently, several software fault detection techniques have been proposed to classifying faulty or non-faulty. However, for such a person, and most studies have shown the power of predictive errors in their own databases, the performance of the software is not consistent. In this paper, we propose a hybrid soft computing technique for SFP based on optimal feature extraction and classification (HST-SFP). First, we introduce the bat induced butterfly optimization (BBO) algorithm for optimal feature selection among multiple features which compute the most optimal features and remove unnecessary features. Second, we develop a layered recurrent neural network (L-RNN) based classifier for predict the software faults based on their features which enhance the detection accuracy. Finally, the proposed HST-SFP technique has the more effectiveness in some sophisticated technical terms that outperform databases of probability of detection, accuracy, probability of false alarms, precision, ROC, F measure and AUC.

An Interpretable Bearing Fault Diagnosis Model Based on Hierarchical Belief Rule Base

  • Boying Zhao;Yuanyuan Qu;Mengliang Mu;Bing Xu;Wei He
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1186-1207
    • /
    • 2024
  • Bearings are one of the main components of mechanical equipment and one of the primary components prone to faults. Therefore, conducting fault diagnosis on bearings is a key issue in mechanical equipment research. Belief rule base (BRB) is essentially an expert system that effectively integrates qualitative and quantitative information, demonstrating excellent performance in fault diagnosis. However, class imbalance often occurs in the diagnosis task, which poses challenges to the diagnosis. Models with interpretability can enhance decision-makers' trust in the output results. However, the randomness in the optimization process can undermine interpretability, thereby reducing the level of trustworthiness in the results. Therefore, a hierarchical BRB model based on extreme gradient boosting (XGBoost) feature selection with interpretability (HFS-IBRB) is proposed in this paper. Utilizing a main BRB alongside multiple sub-BRBs allows for the conversion of a multi-classification challenge into several distinct binary classification tasks, thereby leading to enhanced accuracy. By incorporating interpretability constraints into the model, interpretability is effectively ensured. Finally, the case study of the actual dataset of bearing fault diagnosis demonstrates the ability of the HFS-IBRB model to perform accurate and interpretable diagnosis.

양산 단층곡 경주 지역의 단층 지형 분석 (Analysis on Fault-Related Landformsin the Gyeongju Area of the Yangsan Fault Valley)

  • 박충선;이광률
    • 한국지형학회지
    • /
    • 제25권1호
    • /
    • pp.19-30
    • /
    • 2018
  • This study tries to infer fault lines and produce a map for the lines based on a classification of fault-related landforms and fluvial landformsin the Gyeongju area of the Yangsan Fault Valley. Fault activities in the study area are thought to be older than the time of river formation or stronger than the erosion by river, while the northern and southern parts of the study area seem to have experienced fault activities after valley formation. It is also possible that weaker fault activities than the erosion by river seem to have been prevailed in the parts. In the study area, the Gyeongju alluvial fan is located within a wide erosional valley at the joint area of the Yangsan and Ulsan Faults. From the distribution of the landforms, it is inferred that several fault lines parallel to the Yangsan Fault are distributed at both sides of the fault valley. In particular, the area from Bae-dong to Nogok-ri, Naenam-myeon shows the most obvious linearity of the landforms within the study area. Several fault lines with a direction of NNE-SSW are also found around the epicenter of the 2016 Gyeongju Earthquake.

질감 분석을 이용한 유도 전동기의 기계적 결함 분류 (Mechanical Fault Classification of an Induction Motor using Texture Analysis)

  • 장원철;박용훈;강명수;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권12호
    • /
    • pp.11-19
    • /
    • 2013
  • 본 논문에서는 유도 전동기의 기계적 결함을 진단하기 위해 진동신호와 질감 분석을 이용한 알고리즘을 제안한다. 영상화된 결함 신호가 갖는 무늬, 색상 대비의 특징을 분석하고, 그레이레벨 동시발생행렬(Gray-Level Co-occurrence Model, GLCM)을통해 세 가지 질감특징을추출한다. 추출된 세 가지질감 특징을 RBF(Radial Basis Function) 커널 함수를 사용하는 다중레벨 서포터 벡터 머신(Multi-Level Support Vector Machine, MLSVM)의 입력으로 사용하여 결함 유형을 분류한다. 결함 유형을 분류하는 최적의 MLSVM을 위한 RBF 커널 함수의 매개변수를 찾기 위해 매개변수 값을 0.3부터 1.0으로 바꿔가며 분류성능을 평가한 결과, 결함 유형별로 0.3에서 0.6사이의 매개변수 값에서 100%에 가까운 분류 정확성을 보였다. 또한 15dB, 20dB의 잡음이 첨가된 진동신호를 이용한 실험에서도 평균 98%이상의 높은 분류 정확성을 보였다.

EMD 기반의 유도 전동기 고장 진단 시스템 개발 (Development of EMD-based Fault Diagnosis System for Induction Motor)

  • 강중순
    • 한국소음진동공학회논문집
    • /
    • 제24권9호
    • /
    • pp.675-681
    • /
    • 2014
  • This paper proposes a fault diagnosis system for an induction motor. This system uses empirical mode decomposition(EMD) to extract fault signatures and multi-layer perceptron(MLP) neural network to facilitate an accurate fault diagnosis. EMD can not only decompose a signal adaptively but also provide intrinsic mode functions(IMFs) containing natural oscillatory modes of the signal. However, every IMF does not represent fault signature, an IMF selection algorithm based on harmonics and their energy of each IMF is proposed. The selected IMFs are utilized for fault classification using MLP and this system shows approximately 98 % diagnosis accuracy for the fault vibration signal of the induction motor.

최소자승법을 이용한 적응형 데이터 윈도우의 거리계전 알고리즘 (Distance Relaying Algorithm Based on An Adaptive Data Window Using Least Square Error Method)

  • 정호성;최상열;신명철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권8호
    • /
    • pp.371-378
    • /
    • 2002
  • This paper presents the rapid and accurate algorithm for fault detection and location estimation in the transmission line. This algorithm uses wavelet transform for fault detection and harmonics elimination and utilizes least square error method for fault impedance estimation. Wavelet transform decomposes fault signals into high frequence component Dl and low frequence component A3. The former is used for fault phase detection and fault types classification and the latter is used for harmonics elimination. After fault detection, an adaptive data window technique using LSE estimates fault impedance. It can find a optimal data window length and estimate fault impedance rapidly, because it changes the length according to the fault disturbance. To prove the performance of the algorithm, the authors test relaying signals obtained from EMTP simulation. Test results show that the proposed algorithm estimates fault location within a half cycle after fault irrelevant to fault types and various fault conditions.

카오스 어트랙터 패턴에 의한 고저항 지락사고의 분류 (Classification of High-Impedance Faults based on the Chaotic Attractor Patterns)

  • 신승연;공성곤
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권12호
    • /
    • pp.1486-1491
    • /
    • 1999
  • This paper presents a method of recognizing high impedance fault(HIF) of electrical power systems and classifying fault patterns based on chaos attractors. Two dimensional chaos attractors are reconstructed from neutral point current waveforms. Reliable features for HIF pattern classification are obtained from the chaos attractors. Radial basis function network, trained with two types of HIF data generated by the electromagnetic transient program and measured form actual faults. The RBFN successfully classifies normal and the three types of fault patterns according to the features generated from the chaos attractors.

  • PDF

SVMs 을 이용한 유도전동기 지능 결항 진단 (Intelligent Fault Diagnosis of Induction Motor Using Support Vector Machines)

  • Widodo, Achmad;Yang, Bo-Suk
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.401-406
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine(SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel(KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF