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ABSTRACT 

This study presents fault diagnosis of low speed bearing using support vector machine (SVM). The data used in the 
experiment was acquired using acoustic emission (AE) sensor and accelerometer. The aim of this study is to 
compare the performance of fault diagnosis based on AE signal and vibration signal with same load and speed. A 
low speed test rig was developed to simulate various defects with shaft speeds as low as 10 rpm under several 
loading conditions. In this study, component analysis was also performed to extract the feature and reduce the 
dimensionality of original data feature. Moreover, the classification for fault diagnosis was also conducted using 
original data feature without feature extraction. The result shows that extracted feature from AE sensor gave better 
performance in faults classification. 
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1. Introduction 
 

There are industries that equipped by low speed 
rotating machinery such as rolling machine in paper 
mill, steel pipe and mining industries. Also, low speed 
rotating machine can be found in wind turbine power 
plant. As rotating machinery, bearing is critical 
component and sometimes it must carry heavy loads 
and operate at high efficiency and reliability. Therefore, 
condition monitoring and fault diagnosis of low speed 
bearing is very useful to guarantee the effectiveness 
and reliability of this machine. Establishing intelligent 
system for faults detection of low speed rotating 
machine is a solution. To face this issue, the research 
area in machine learning has been applied to perform 
condition monitoring, faults detection and 
classification. 

Furthermore, machine fault diagnosis based on 
classification technique such as SVM will perform well 
if the data input consists of useful features which 
represent each condition or class. In the present study, 
we employ component analysis that is aimed to support 
the data preparation process. Using component analysis, 
the useful features can be extracted from the original 
data and high-dimensional of original data can be 

reduced by removing irrelative features, so that the 
classifier will reach high accuracy. 

 
2. Methods 

2.1. Support vector machine (SVM) 
 

SVMs are a kind of machine learning based on 
statistical learning theory. The basic idea of applying 
SVM to pattern classification can be stated as follows: 
first, map the inputs vectors into one features space, 
possible in higher space, either linearly or nonlinearly, 
which is relevant with the kernel function. Then, within 
the feature space from the first step, seek an optimized 
linear division, that is, construct a hyperplane which 
separates two classes. It can be extended to multi-class. 
SVMs training always seek a global optimized solution 
and avoid over-fitting, so it has ability to deal with a 
large number of feature. A complete description about 
SVMs is available in [1]. In the linear separable case, 
there exists a separating hyperplane whose function is 
 

w⋅x + b = 0                    (1) 
 

which implies  
 
yi(w⋅x + b = 0) ≥ 1,  i = 1,…, N              (2)  
 
By minimizing ||w|| subject to this constrain, the 

SVMs approach tries to find a unique separating 
hyperplane. Here ||w|| is the Euclidean norm of w, and 
the distance between the hyperplane and the nearest 
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data points of each class is 2/||w||. By introducing 
Lagrange multipliers αi, the SVMs training procedure 
amounts to solving a convex quadratic problem (QP). 
The solution is a unique globally optimized result, 
which has the following properties 
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Only if corresponding αi > 0, these xi are called support 
vectors. 

When SVMs are trained, the decision function can 
be written as 
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For a linear non-separable case, SVMs perform a 
nonlinear mapping of the input vector x from the input 
space Rn into a higher dimensional Hilbert space, 
where the mapping is determined by kernel function. 
According to the different classification problems, the 
different kernel function can be selected to obtain the 
optimal classification results. 
 
2.2 Component analysis (CA) 
 

Component analysis is a technique of multivariate 
statistical analysis that can linearly or nonlinearly 
transforms an original set variables into a substantially 
smaller set variables. It can be viewed as a classical 
method of multivariate statistical analysis for 
dimensionality reduction. Because of the fact that a 
small set of uncorrelated or independent variables is 
much easier to understand and use in further analysis 
than a larger set of correlated or dependent variables. 
This technique has been widely applied to virtually 
every substantive area including cluster analysis, 
visualization of high-dimensionality data, regression, 
data compression and pattern recognition. In this 
research, component analysis is used to extract the 
sensitive feature from original features and to reduce 
the dimension of original features by means of 
principal component analysis (PCA) [2], independent 
component analysis (ICA) [3], kernel PCA [4] and 
kernel ICA. 
 
3. Signal process and preparation 
 

The time series signal can be used to perform fault 
diagnosis by analysing vibration or acoustic signal 
obtained from experiment. Statistical methods are 
widely used that can able to present the physical 
meaning of time data series. For instance, the use of 
overall root-means-square (RMS) and crest factor 
(ratio of peak value to RMS) has been applied for 
detection of localized defects [5]. Moreover, 
probability density has also been used popularly for 
bearing defect detection [6]. 

In this study, statistical method is employed to 
investigate the characteristic of the system by 
calculating 14 statistical feature parameters in time and 

frequency domain presented as follows: mean, RMS, 
shape factor, skewness, kurtosis, crest factor, entropy 
error, entropy estimation, histogram lower and upper, 
peak value, RMS frequency, frequency center and root 
variance frequency. 

For detecting rolling element bearing failures, we 
also performed envelope analysis to show bearing 
characteristics frequencies by isolating other unwanted 
signals. Envelope analysis typically refers to sequence 
of the following procedures: (1) Band-pass filtering 
(BPF), (2) Signal rectification, (3) Hilbert transform of 
low-pass filtering, and (4) Power spectrum. The 
purpose of BPF is to reject the low-frequency high-
amplitude signals to eliminate random-noise outside 
the pass-band. In the present study, we employed six 
band-pass setting for enveloping: BPF1: 5-15 kHz, 
BPF2: 15-25 kHz, BPF3: 25-35 kHz, BPF4: 35-55 kHz, 
BPF5: 55-75 kHz, BPF6: 75-100 kHz. From the 
enveloping process, six features called mean-peak ratio 
[7] are calculated using Eqs. (5)-(7). 
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4. Experiment 
 

The low speed machinery fault simulator was 
developed to conduct research on low speed condition 
monitoring and fault diagnosis [8]. This test rig enables 
modelling of bearing and gearbox faults under different 
loading conditions and verification of condition 
monitoring at low speed as low as 10 rpm. At the 
driving end, the shaft is attached to a reduction gear 
box (10.1:1) through a coupling. The constant radial 
load can be applied close to the driven-end support for 
long period that is measured by load cell. An AE 
sensor (type R3a from Physical Acoustic Corporations) 
with frequency range 25-530 kHz was attached on the 
top of the bearing housing using magnetic holder as 
shown in Fig. 1a. 

The data acquisition process is presented in Fig. 1b. 
The bearings used in this study are roller bearing: SKF 
NF307 and N307, with the inner ring and outer ring are 
separable. The test bearing enables an easy access to 
the raceway for seeded defects and to observe the 
surface condition. The faults of crack and spall was 
simulated by a hair-line scratching using diamond bit 
and grinding using air-speed grinding tool, respectively. 
All type seeded defect bearings used in this study (Fig. 
2) are listed as follows: inner-race crack (IFC1), inner 
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race spall (IF1), outer-race crack (OFC1), outer-race 
spall (OF1), small spall on roller (BF1), medium spall 
on roller (BF2). In addition, the normal bearing was 
also experimented for benchmarking. Totally, we have 
6 classes of faulty bearings and one normal condition 
for classification. 
 

  
(a) 

 
(b) 

 
Fig. 1 Location of AE sensor (a) and data acquisition 

process (b). 
 
5. Training and classification 
 

SVM based multi-class classification is applied to 
perform the classification process using one-against-
one [9]. Sequential minimal optimization (SMO) 
proposed by Platt [10] is used to solve the SVM 
classification problem. 

In this study, RBF kernel (K= exp(– ||x – xj||2 /2γ 2) 
and polynomial (K = (γ xT·xj + r)d ) are used as the 
basic kernel function of SVM. To select proper kernel 
parameters (C, γ and d), we used cross-validation 
technique [11] to obtain good performance of 
classification and to avoid overfitting or underfitting 
problem. 

 
6. Results and discussion 
 

The results of this study can be shown in Tables 1, 
2, and 3. In these tables, we listed the kernel function, 
classification error (%) for training and testing and 
number of support vector (SV). The classification error 
is determined by using ratio of correct classification 
and on the whole of training or testing respectively. 

 
 

 
 
 
 
 

   
(a)               (b)          (c) 

 

  
(d)                 (e)                 (f) 
 

Fig. 2 Seeded defects on the bearing: (a) IFC1, (b) IF1, 
(c) OFC1, (d) OF1, (e) BF1, (f) BF2. 

 
Table 1 shows the classification performance of 

original signal without feature extraction via 
component analysis. The results are not good for both 
kernel functions: RBF and polynomial. Even though 
the training process reached good accuracy for RBF 
kernel, however the testing performance is bad, the 
error is very high. The lack performance of 
classification is due to the presence of irrelative 
features that decrease the accuracies.  

Table 2 presents classification accuracy of vibration 
signal augmented by feature extraction using 
component analysis. ICA feature extraction gives best 
performance among others both for RBF and 
polynomial kernel. This phenomenon can be explained 
that ICA finds the components not merely uncorrelated 
but independent. Independent components are more 
useful for classification rather than uncorrelated 
components. The reason is the negentropy in ICA 
could take into account the higher order information of 
the original inputs better than PCA. However, RBF 
kernel outperforms polynomial kernel in accuracies. 
KICA also gives better performance although its 
accuracies are not as good as ICA does.  

In this study, PCA and KPCA are not well 
performing. The best performance in the present study 
is given by AE signal augmented by ICA feature 
extraction (Table 3). ICA can extract the useful feature 
and reduce the dimensionality. It gives good data input 
for classification process. Moreover, KICA also 
performs better than PCA and KPCA in this study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 Classification performance of original data 
Signal Kernel Parameters Error (Training/Testing), % SV 

Vibration 
RBF (C, γ) (1, 0.125) 0.0/85.7 48 
Polynomial (d, C) (2, 1000) 82.1/87.8 56 

AE 
RBF (C, γ) (1, 0.125) 0.0/87.5 48 

Polynomial (d, C) (2, 1000) 75.0/85.7 56 
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7. Conclusions 
 

In this study, fault diagnosis of low speed bearing 
based on classification method using SVM has been 
presented. The data used in the classification process 
are vibration and AE signals. Statistical features are 
calculated from time and frequency domain of each 
signal. SVM based multi-class classification is trained 
by statistical features with and without feature 
extraction. In this case, feature extraction is performed 
by component analysis via ICA, PCA, KICA and 
KPCA. The results show that ICA outperforms among 
others feature extraction technique for vibration and 
AE signals. Moreover, the comparison of classification 
performance shows that AE signal is better than 
vibration signal based on experimental work. 
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Table 2 Classification performance: vibration, 20 rpm, load 5 kN 

Component 
analysis 

Kernel parameters Error (Training/Testing), % SV 

RBF (C, γ) Polynomial 
(d, C) RBF Polynomial RBF Polynomial

ICA (128, 8) (2, 1000) 9.3/20.4 26.8/30.6 45 26 

PCA (1, 0.125) (2, 1000) 0.0/85.7 91.1/89.8 48 56 

KICA (128, 1) (2, 1000) 20.8/73.4 5.4/79.6 47 53 

KPCA (32, 0.125) (2, 1000) 79.2/87.8 44.6/83.7 48 53 

Table 3 Classification performance: AE, 20 rpm, load 5 kN 

Component 
analysis 

Kernel parameters Error (Training/Testing), % SV 

RBF (C, γ) Polynomial 
(d, C) RBF Polynomial RBF Polynomial

ICA (128, 2) (2, 1000) 14.6/11.2 7.1/18.3 42 35 

PCA (1, 0.125) (2, 1000) 0.0/85.7 75.0/73.5 48 56 

KICA (16, 1) (2, 1000) 31.3/75.6 1.7/75.5 44 54 

KPCA (32, 0.125) (2, 1000) 79.7/85.7 48.2/83.7 48 53 
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