• Title/Summary/Keyword: fatty acid desaturase

Search Result 106, Processing Time 0.027 seconds

Stearoyl-CoA desaturase induces lipogenic gene expression in prostate cancer cells and inhibits ceramide-induced cell death

  • Kim, Seung-Jin;Kim, Eung-Seok
    • Animal cells and systems
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Perturbation of metabolism with increased expression of lipogenic enzymes is a common characteristic of human cancers, including prostate cancer. In the present work the overexpression of stearoyl-CoA desaturase (SCD) in LNCaP cells led to increased mRNA levels of fatty acid synthase (FAS) and acetyl-CoA-carboxylase-a, whereas micro RNA-mediated silencing of SCD inhibited the expression of these lipogenic genes in LNCaP cells. Treatment with the FAS-specific inhibitor cerulenin inhibited SCD induction of LNCaP cell proliferation. In addition, a transient transfection assay revealed the capability of cerulenin to suppress SCD and dihydrotestosterone induction of androgen receptor transcriptional activity. Furthermore, overexpression of SCD in LNCaP cells produced marked resistance to ceramide-induced cell death with reduced poly(ADP-ribose) polymerase (PARP) cleavage. In contrast, silencing of SCD expression increased Bax protein in LNCaP cells. Furthermore, addition of ceramide to SCD knockdown LNCaP cells increased cell death and caspase-3 activity with drastic increase of PARP cleavage. Together, the data indicate that SCD may provide resistance of prostate cancer cells to ceramide-induced cell death.

Effects of Dietary ${\omega}$-3 and ${\omega}$-6 Polyunsaturated Fatty Acids on Fatty Acid Composition of Immune Organs in Young Chicks (${\omega}$-3 및 ${\omega}$-6계 지방산 첨가 사료의 급여가 어린 병아리에서 면역기관 내 지방산 조성에 미치는 영향)

  • Ahn, Byeong-Ki;Youn, Je-Yeong;Chee, Kyu-Man
    • Korean Journal of Poultry Science
    • /
    • v.30 no.4
    • /
    • pp.289-299
    • /
    • 2003
  • Effects of various combinations of corn oil (CO) and perilla oil (PO) as respective dietary sources of ${\omega}$-6 and ${\omega}$-3 polyunsaturated fatty acids on fatty acid profiles of immune organs were studied in young chicks. Seventy-five 1-day-old male (ISA Brown) chicks were assigned to five treatments with three replications. Semi-purified-type diets containing glucose and soybean meal as major ingredients were added with 8% CO, 6% CO+2% PO, 4% CO+4% PO, 2% CO+6% PO and 8% PO and fed for 7 weeks. There were no significant differences in body weight gain, feed intake and relative weights of liver and immune organs (g/100g weight) among dietary groups. Dietary fatty acid patterns were generally reflected in the fatty acid compositions of all immune organs such as spleen, thymus and bursa of Fabricius. The levels of a-linolenic acid(LNA), eicosapentaenoic acid (EPA) and docosahexaenoic acid in various immune organs increased with increasing levels of perilla oil in the diets, whilet the levels of linoleic acid (LA) and arachidonic acid (AA) decreased. Thymus appeared to have capacity to retain remarkably higher (P<0.05) levels of LA and LNA up to 37 and 22%, respectively, compared to the other organs. Thymic tissue contained ${\omega}$-3 fatty acid and ${\omega}$-6 fatty acid 10~36 times and 3~5 times higher than the other organs, respectively. Spleen tissue was specifically higher (P<0.05) in the levels of AA and EPA and the ratios of AA/LA and EPA/LNA, compared to the other organs, suggesting that the tissue might have high desaturase activity to convert LA or LNA to AA or EPA, respectively. BSA antibody production tended to increase by 18 ~ 32% with higher levels of perilla oil in diet, although the increase was not statistically significant. In conclusion, fatty acid compositions of immune organs very depending on the lipid composition of the diets and each organ appears to respond differently for its fatty acid profile to dietary lipids. Considering AA and EPA are precursors of many important eicosanoids, further studies are required to clarify the responses of the immune organs to the dietary fatty acids.

Effects of prolonged photoperiod on growth performance, serum lipids and meat quality of Jinjiang cattle in winter

  • Yu, Yan;Qiu, Jingyun;Cao, Jincheng;Guo, Yingying;Bai, Hui;Wei, Shengjuan;Yan, Peishi
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1569-1578
    • /
    • 2021
  • Objective: This study was conducted to investigate the potential effects of prolonged photoperiod on the serum lipids, carcass traits, and meat quality of Jinjiang cattle during winter. Methods: Thirty-four Jinjiang bulls aged between 14 and 16 months were randomly assigned to two groups that were alternatively subjected to either natural daylight +4 h supplemental light (long photoperiod, LP) or natural daylight (natural photoperiod, NP) for 96 days. The potential effects on the levels of serum lipids, carcass traits, meat quality, and genes regulating lipid metabolism in the intramuscular fat (IMF) of the cattle were evaluated. Results: Jinjiang cattle kept under LP showed significant increase in both dry matter intake and backfat thickness. the serum glucose and the plasma leptin levels were significantly reduced, while that of melatonin and insulin were observed to be increased. The crude fat contents of biceps femoris muscle and longissimus dorsi muscle were higher in LP than in NP group. In longissimus dorsi muscle, the proportions of C17:0 and C18:0 were significantly higher but that of the C16:1 was found to be significantly lower in LP group. The relative mRNA expressions in IMF of longissimus dorsi muscle, the lipid synthesis genes (proliferator-activated receptor gamma, fatty acid-binding protein) and the fatty acid synthesis genes (acetyl-coa carboxylase, fatty acid synthetase, 1-acylglycerol-3-phosphate acyltransferase) were significantly up-regulated in LP group (p<0.05); whereas the hormone-sensitive lipase and stearoyl-CoA desaturase 1 were significantly down-regulated in LP than in NP group. Conclusion: Prolonged photoperiod significantly altered the growth performance, hormonal levels, gene expression and fat deposition in Jinjiang cattle. It suggested that the LP improved the fat deposition by regulating the levels of different hormones and genes related to lipid metabolism, thereby improving the fattening of Jinjiang cattle during winter.

LC-MS Analysis According to the Combined Treatment of Paenibacillus yonginensis DCY84T and Silicon in Rice

  • Yo-Han Yoo;Mee Youn Lee;Yeon-Ju Kim;Eok-Keun Ahn;Ki-Hong Jung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.232-232
    • /
    • 2022
  • We reported in our recent studies that the combined treatment of Paenibacillus yonginensis DCY84T (DCY84T) and Silicon (Si) promotes initial plant growth and increases resistance to biotic and abiotic stress. To understand the molecular background of these phenotypes, Liquid Chromatography Mass Spectrometry (LC-MS) analysis was performed, and it was confirmed that unsaturated fatty acid metabolites such as oleic acid and linoleic acid decreased in response to the combined treatment of DCY84T and Si. The stearoyl-acyl carrier protein desaturase (SACPD) introduces the cis double bond into the acyl-ACPs at C9, resulting in the production of unsaturated fatty acid. We identified OsSSI2 encoding SACPD in rice and found that the expression of OsSSI2 was reduced under DCY84T and Si treatment. Furthermore, qRT-PCR analysis revealed that the expression of OsWRKY45, which is downstream of OsSSI2, was upregulated in response to DCY84T and Si treatment. These results enable the speculation that activation of the salicylic acid (SA)-responsive gene, OsWRKY45, may contribute to enhancing biological stress resistance. Based on this, we propose a probable model for the rice defense pathway following DCY84T and Si treatment. This model retains a WRKY45-dependent but NH1(NPR1)-independent SA signaling pathway.

  • PDF

Probiotics Increase Intramuscular Fat and Improve the Composition of Fatty Acids in Sunit Sheep through the Adenosine 5'-Monophosphate-Activated Protein Kinase (AMPK) Signaling Pathway

  • Yue Zhang;Duo Yao;Huan Huang;Min Zhang;Lina Sun;Lin Su;LiHua Zhao;Yueying Guo;Ye Jin
    • Food Science of Animal Resources
    • /
    • v.43 no.5
    • /
    • pp.805-825
    • /
    • 2023
  • This experiment aims to investigate the impact of probiotic feed on growth performance, carcass traits, plasma lipid biochemical parameters, intramuscular fat and triglyceride content, fatty acid composition, mRNA expression levels of genes related to lipid metabolism, and the activity of the enzyme in Sunit sheep. In this experiment, 12 of 96 randomly selected Sunit sheep were assigned to receive the basic diet or the basic diet supplemented with probiotics. The results showed that supplementation with probiotics significantly increased the loin eye area, and decreased plasma triglycerides and free fatty acids, increasing the content of intramuscular fat and triglycerides in the muscle and improving the composition of the fatty acids. The inclusion of probiotics in the diet reduced the expression of adenosine 5'-monophosphate-activated protein kinase alpha 2 (AMPKα2) mRNA and carnitine palmitoyltransferase 1B (CPT1B) mRNA, while increasing the expression of acetyl-CoA carboxylase alpha (ACCα) mRNA, sterol regulatory element-binding protein-1c (SREBP-1c) mRNA, fatty acid synthase mRNA, and stearoyl-CoA desaturase 1 mRNA. The results of this study indicate that supplementation with probiotics can regulate fat deposition and improves the composition of fatty acids in Sunit sheep through the signaling pathways AMPK-ACC-CPT1B and AMPK-SREBP-1c. This regulatory mechanism leads to an increase in intramuscular fat content, a restructuring of muscle composition of the fatty acids, and an enhancement of the nutritional value of meat. These findings contribute to a better understanding of the food science of animal resources and provide valuable references for the production of meat of higher nutritional value.

Effects of Feeding Organic Diets with Different Fatty Acid Composition Ratio on CLA and Fatty Acid Contents in Raw Milk of Holstein-Friesian Dairy Cows (지방산 조성 비율이 다른 유기농 사료 급여가 홀스타인 원유의 CLA 및 지방산 함량에 미치는 영양)

  • Nam, In-Sik;Lim, Yang-Cheon;Nam, Ki-Taeg
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.1
    • /
    • pp.219-231
    • /
    • 2017
  • The aim of this study was to determine the effects of feeding of different organic diets (based on fatty acid contents) on CLA and fatty acid concentration of raw milk. Total two hundred and ninety Holstein cows were divided into control, treatment 1 and treatment 2 groups according to the parity and milk yield. Control diet was contained higher C16:00, C18:2 and SFA. Treatment 1 diet was higher in C18:1, C18:2, UFA and treatment 2 diet was higher in MUFA and C18:3 and PUFA. The results indicated that the C16:0 concentration in raw milk was greater in the group of treatment 2 than in control and treatment 1 (p<0.05). The concentration of CLA in treatment 2 was higher compared to treatment 1 and control groups (p<0.05). The ration of n-3/n-6 was higher in treatment 2 group compared with control and treatment 1 (p<0.05). In conclusion, feeding 100% of grass feed for dairy cows increases CLA and n-3 content in milk. From now on, basis on our study, development of functional milk will increase a health of children and old people.

Ginseng Leaf Extract Prevents High Fat Diet-Induced Hyperglycemia and Hyperlipidemia through AMPK Activation

  • Yuan, Hai-Dan;Kim, Sung-Jip;Quan, Hai-Yan;Huang, Bo;Chung, Sung-Hyun
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.369-375
    • /
    • 2010
  • This study evaluated the protective effects of ginseng leaf extract (GLE) against high fat-diet-induced hyperglycemia and hyperlipidemia, and explored the potential mechanism underlying these effects in C57BL/6J mice. The mice were randomly divided into four groups: normal control, high fat diet control (HFD), GLE-treated at 250 mg/kg, and GLE-treated at 500 mg/kg. To induce hyperglycemic and hyperlipidemic states, mice were fed a high fat diet for 6 weeks and then administered GLE once daily for 8 weeks. At the end of the treatment, we examined the effects of GLE on plasma glucose, lipid levels, and the expression of genes related to lipogenesis, lipolysis, and gluconeogenesis. Both GLE groups lowered levels of plasma glucose, insulin, triglycerides, total cholesterol, and non-esterified fatty acids when compared to those in HFD group. Histological analysis revealed significantly fewer lipid droplets in the livers of GLE-treated mice compared with HFD mice. To elucidate the mechanism, Western blots and RT-PCR were performed using liver tissue. Compared with HFD mice, GLE-treated mice showed higher levels of phosphorylation of AMP-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylase, but no differences in the expression of lipogenic genes such as sterol regulatory element-binding protein 1a, fatty acid synthase, sterol-CoA desaturase 1 and glycerol-3-phosphate acyltransferase. However, the expression levels of lipolysis and fatty acid uptake genes such as peroxisome proliferator-activated receptor-$\alpha$ and CD36 were increased. In addition, phosphoenolpyruvate carboxykinase gene expression was decreased. These results suggest that GLE ameliorates hyperglycemia and hyperlipidemia by inhibiting gluconeogenesis and stimulating lipolysis, respectively, via AMPK activation.

Combined Treatment of Silymarin and Jakyakgamcho-tang Suppresses Hepatic Lipid Accumulation and Inflammation in C57BL/6 Mice (Silymarin과 작약감초탕 병용투여의 C57BL/6 마우스 간조직 지질축적 및 염증 억제효과)

  • Choi, Jeong Won;Cho, Su-Jung;Shin, Mi-rae;Park, Hae-Jin
    • The Korea Journal of Herbology
    • /
    • v.37 no.5
    • /
    • pp.17-26
    • /
    • 2022
  • Objective : The aim of the present study is to examine hepatic lipid-lowering and anti-inflammatory effects of silymarin combined with Jakyakgamcho-tang on non-alcoholic fatty liver disease in a high fat diet-induced obese mice model. Methods : C57BL/6 mice were divided into four dietary groups: (1) Normal, (2) Control (60% high-fat diet), (3) Control + silymarin 50 mg/kg/day (Silymarin), (4) Control + Silymarin 50 mg/kg/day + Jakyakgamcho-tang 100 mg/kg/day (SPG). After 12 weeks administration, mice were sacrificed and lipids and inflammation-related biomarkers were analyzed liver and plasma. Results : Silymarin and SPG treatments significantly lowered body and liver weights compared to the Control. Serumlipids (triglyceride (TG), total cholesterol) and pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin 1𝛽, and IL-6) concentrations were significantly lowered in the Silymarin and SPG groups than the Control group. Silymarin and SPG treatments suppressed hepatic TG level and hepatic lipid droplets compared to the Control. Theses two treatments significantly increased hepatic kinase B1 and AMP-activated protein kinase protein levels, and significantly decreased hepatic key lipogenic enzymes (acetyl-CoA carboxylase, fatty acid synthase and stearyl coenzyme A desaturase 1) protein levels than the Control. SPG also significantly increased hepatic fatty acid oxidation-related protein (peroxisome proliferator-activated receptor alpha and uncoupling protein 2) levels than the Control. Conclusions: Silymarin and SPG suppressed hepatic lipid accumulation by regulating hepatic protein expression, and lowered blood pro-inflammatory cytokines concentrations though the synergic effect of silymarin and Jakyakgamchotang was not clear.

Cudrania tricuspidata Fruit Extract Ameliorates Free Fatty Acid-induced Lipid Accumulation in HepG2 Cells (유리지방산으로 지방축적을 유도한 HepG2 cells 대한 꾸지뽕 열매 추출물의 개선 효과)

  • Lee, Hyo-Jeong;Park, Se-Eun;Kim, Seung
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1144-1151
    • /
    • 2019
  • Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with various metabolic syndromes, such as obesity, dyslipidemia, hypertension, and diabetes. Cudrania tricuspidata is a medicinal plant distributed widely in Asia and has been used in clinical practice to treat various diseases. The aim of this study is to determine the lipid-lowering effects of C. tricuspidata fruit extract (CTE) using a cell model induced by free fatty acids (FFAs). HepG2 cells were exposed to 1mM FFAs (palmitic acid:oleic acid = 2:1) for 24 hr to simulate the conditions of NAFLD in vitro. CTE attenuated the increases of lipid accumulation, intracellular triglyceride, and cholesterol content and inhibited 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) activity in the HepG2 cells in a dose-dependent manner. Also, CTE inhibited the protein expression of lipogenesis-related genes, such as sterol regulatory element-binding protein-1/-2 (SREBP-1/-2), fatty acid synthase (FAS), and stearoyl CoA desaturase-1 (SCD-1) in FFAs-induced lipid accumulation in HepG2 cells. In addition, CTE-induced adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in HepG2 cells. These results suggest that CTE attenuates hepatic lipid accumulation by inhibiting lipogenesis through the modulation of the AMPK signaling pathway on FFAs-induced lipogenesis in HepG2 cells and may potentially prevent NAFLD.

Gene Expression Patterns Associated with Peroxisome Proliferator-activated Receptor (PPAR) Signaling in the Longissimus dorsi of Hanwoo (Korean Cattle)

  • Lim, Dajeong;Chai, Han-Ha;Lee, Seung-Hwan;Cho, Yong-Min;Choi, Jung-Woo;Kim, Nam-Kuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1075-1083
    • /
    • 2015
  • Adipose tissue deposited within muscle fibers, known as intramuscular fat (IMF or marbling), is a major determinant of meat quality and thereby affects its economic value. The biological mechanisms that determine IMF content are therefore of interest. In this study, 48 genes involved in the bovine peroxisome proliferator-activated receptor signaling pathway, which is involved in lipid metabolism, were investigated to identify candidate genes associated with IMF in the longissimus dorsi of Hanwoo (Korean cattle). Ten genes, retinoid X receptor alpha, peroxisome proliferator-activated receptor gamma (PPARG), phospholipid transfer protein, stearoyl-CoA desaturase, nuclear receptor subfamily 1 group H member 3, fatty acid binding protein 3 (FABP3), carnitine palmitoyltransferase II, acyl-Coenzyme A dehydrogenase long chain (ACADL), acyl-Coenzyme A oxidase 2 branched chain, and fatty acid binding protein 4, showed significant effects with regard to IMF and were differentially expressed between the low- and high-marbled groups (p<0.05). Analysis of the gene co-expression network based on Pearson's correlation coefficients identified 10 up-regulated genes in the high-marbled group that formed a major cluster. Among these genes, the PPARG-FABP4 gene pair exhibited the strongest correlation in the network. Glycerol kinase was found to play a role in mediating activation of the differentially expressed genes. We categorized the 10 significantly differentially expressed genes into the corresponding downstream pathways and investigated the direct interactive relationships among these genes. We suggest that fatty acid oxidation is the major downstream pathway affecting IMF content. The PPARG/RXRA complex triggers activation of target genes involved in fatty acid oxidation resulting in increased triglyceride formation by ATP production. Our findings highlight candidate genes associated with the IMF content of the loin muscle of Korean cattle and provide insight into the biological mechanisms that determine adipose deposition within muscle.