• Title/Summary/Keyword: fatigue safe life

Search Result 72, Processing Time 0.025 seconds

A study on the corrosive behaviour of Rolling stock structures by electrochemical experiments (전기화학시험에 의한 구조물의 부식 특성 연구)

  • Oh Chang-Rok;Kim Yong-Ki;Jang Se-Ky;Goo Byeong-Chun
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.284-289
    • /
    • 2004
  • The present paper describes an experimental study on the corrosive behaviour of Rolling stock structures. It is important to predict corrosive behaviour of rolling stock structures for safe service and to know relation between corrosion and fatigue life. This paper practiced electrochemical corrosion test of SS400 and SM490A. This study will examine the corrosive properties and differences of SS400 and SM490A from measuring corrosion potential and corrosion current density.

  • PDF

An experimental study on the corrosive behaviour of Rolling stock structures (차량구조물의 부식 거동에 관한 실험적 연구)

  • Oh Chang-Rok;Kim Yong-Ki;Jang Se-Ky;Goo Byeong-Chun
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.346-351
    • /
    • 2004
  • The present paper describes an experimental study on the corrosive behaviour of Rolling stock structures. It is important to predict corrosive behaviour of rolling stock structures for safe service and to know relation between corrosion and fatigue life. This paper practiced atmospheric corrosion test of SS400 and SM490A. This study practiced an additional test on the influence of heat-treatment. This test will examine corrosive behaviour and differences of SS400 and SM490A.

  • PDF

A study on the corrosive behaviour of Rolling stock structures by electrochemical experiments (전기화학시험에 의한 부식용액별 구조물의 부식 특성 연구)

  • Oh Chang-Rok;Goo Byeong-Chun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.686-691
    • /
    • 2004
  • The present paper describes an experimental study on the corrosive behaviour of Rolling stock structures. It is important to predict corrosive behaviour of rolling stock structures for safe service and to know relation between corrosion and fatigue life. This paper practiced electrochemical corrosion test of SS400 and SM490A. This study will examine the corrosive properties and differences of SS400 and SM490A from measuring corrosion potential, corrosion current density and corrosion rate.

  • PDF

An Estimation on Two Stroke Low Speed Diesel Engines' Shaft Fatigue Strength due to Torsional Vibrations in Time Domain (시간영역에서 과도 비틀림 진동에 의한 저속 2행정 디젤엔진의 축계 피로강도 평가)

  • Lee, Don-Chool;Kim, Sang-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.572-578
    • /
    • 2007
  • Two stroke low speed diesel engines are widely used for marine propulsion or as power plant prime mover. These engines have many merits which includes higher thermal efficiency, mobility and durability. Yet various annoying vibrations occur sometimes in ships or at the plant itself. Of these vibrations, torsional vibration is very important and dictates a careful investigation during the engme's initial design stage for safe operation. With the rule and limit on torsional vibration in place, shaft strength fatigue due to torsional vibration however demands further analysis which possibly can be incorporated in the classification societies' rule and limit. In addition, the shaft's torsional vibration stresses can be calculated equivalently from accumulated fatigue cycles number due to transient torsional vibration in time domain. In this paper, authors suggest a new estimation method combined with Palmgren-Miner equation. A 6S70MC-C ($25,320ps{\times}91rpm$) engine for ship propulsion was selected as a case study. Angular velocity was measured, instead of shaft's strain, for simplified measurement and it was converted to torsional vibration stress for accumulated fatigue cycle numbers in shafting life time. Likewise, the accumulated fatigue calculation was compared with shaft fatigue strength limit. This new method can be further realized and confirmed in ship with two stroke low speed diesel engine.

A Study of Dynamis Force Estimation and Strength Design of KALES (포장가속시험시설의 동역학 힘 예측 및 강도설계에 관한 연구)

  • Kim, Nak-In;Yang, Sung-Chul;Park, Yong-Geol
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.211-221
    • /
    • 2001
  • The dynamic force estimation and strength design of KALES(Korea Accelerated Loading and Environmental Simulator) are studied. The KALES is continuously rotating the test track and subjected to the dynamic or impact forces during operation since the track is composed of straight and curved line. To estimate the dynamic equation for the model car which was already made is derived with analytical and experimental techniques. Using similarity relationships between the model car and KALES, the dynamic force and stability properties for KALES can be predicted. The stress analysis and fatigue life estimation of KALES is also estimated with the calculated dynamic load. From the stress analysis and fatigue life estimation results, it was found that the design of KALES is safe.

  • PDF

Study on the Convergent Life Evaluation due to the Bumper Configuration of Multipurpose Vehicle (다목적차량의 범퍼형상에 따른 융합적 수명평가에 관한 연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.85-90
    • /
    • 2015
  • In this study, the life evaluation due to the structural configuration of bumper attached at the front side of ATV vehicle is studied on the basis of fatigue analysis. As the purpose of this study, the characteristic of bumper exposed on the repetitive loading condition like the vibration is understood. The position of crack happened at the fatigue situation is grasped in advance and complemented in advance. It is considered that the multipurpose vehicle is designed to not be driven on the paved general road but the rough road like the unpaved load. And the weak part of bumper is understood through the study of life evaluation on this driving environment. The durability can be improved by doing the safe design of automotive bumper on the basis of the analysis result. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

Bearingless Rotor Hub Composite Component Fatigue Analysis of Utility Helicopter to perform the Basic Mission (기본임무를 수행하는 기동헬기에 적용될 무베어링 허브 복합재 구성품 피로수명 해석)

  • Kim, Taejoo;Kee, Youngjoong;Kim, Deog-kwan;Kim, Seung-ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.383-389
    • /
    • 2013
  • Rotor system is a very important part which produces lift, thrust and control force in helicopter. Component of rotor system must endure various flight load for the required life. In helicopter rotor system, bearingless rotor system is the highest technology rotor system compare with articulated and hingeless rotor system. Baaringless rotor system is not include mechanical flap hinge, lag hinge and pitch bearing. Bearingless rotor component flexbeam which made by composite material has conduct hinge and bearing role instead of mechanical flap hinge, lag hinge and pitch bearing. These characteristics has less part number and lass weight than others. In this paper, conduct safe life analysis of bearingless composite component flexbeam and torque tube applying to utility helicopter load condition.

  • PDF

FATIGUE DESIGN OF BUTT-WELDED TUBULAR JOINTS

  • Kim, D. S.;S. Nho;F. Kopp
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.127-132
    • /
    • 2002
  • Recent deepwater offshore structures in Gulf of Mexico utilize butt welded tubular joints. Application of welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical because the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimating the fatigue behavior of these tubular members in the design stage is generally conducted by using S-N curves specified in the codes and standards. Applying the stress concentration factor of the welded structure to S-N approach often results in very conservative assessment because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fracture mechanics and fitness for service (FFS) technology have been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves to be used and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. An attempt was made to develop set of S-N curves based on fracture mechanics approach by considering non-uniform stress distribution and a threshold stress intensity factor. Series of S-N curves generated from this approach were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02"). Similar comparison with API X′ was made for tubular joint.. These initial crack depths are larger than the limits of inspection by current Non-destructive examination (NDE) means, such as Automatic Ultrasonic Inspection (AUT). Thus a safe approach can be taken by specifying acceptance criteria that are close to limits of sizing capability of the selected NDE method. The comparison illustrates conservatism built into the S-N design curve.

  • PDF

Structural Safety Evaluation of Basic Design Model of Linear Actuator for Blade Pitch Control of eVTOL Aircraft (eVTOL 항공기 블레이드 피치 제어용 선형 구동기 기본설계 모델의 구조 안전성 평가)

  • Young-Cheol, Kim;Dong-Hyeop, Kim;Sang-Woo, Kim;Jeong-Hyun, Kang;Dohyung, Kim
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.106-113
    • /
    • 2022
  • The structural safety of the basic design model of the linear actuator for the individual blade pitch control of eVTOL personal aircraft was investigated. Stress analysis based on the finite element method was conducted, and the margin of safety was calculated to examine the structural safety under stall load conditions. Additionally, fatigue analysis was conducted to evaluate the fatigue life of the linear actuators under operating conditions. The load history with the blade pitch angle was calculated using multi-body dynamics analysis, and the static load analysis was used to obtain the stress distribution for the rated load. As a result, it was confirmed that the safety margins exceeded zero, and the fatigue lives of all linear actuator components exceeded 107 cycles, indicating a safe structural range.

Structural Design and Experimental Investigation of A Medium Scale Composite Wind Turbine Blade Considering Fatigue life

  • Kong, C.D.;Bang, J.H.;Jeong, J.C.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.88-89
    • /
    • 2002
  • The aims of this study is to realize the structural design for development of a medium scale E-glass/epoxy composite wind turbine blade for a 750KW class horizontal axis wind turbine system. In this study, the various load cases specified by the IEC61400-1 international specification and GL Regulations for the wind energy conversion system were considered, and a specific composite structure configuration which can effectively endure various loads such as aerodynamic and centrifugal loads, loads due to accumulation of ice, hygro-thermal and mechanical loads was proposed. In order to evaluate the structure, the structural analysis for the composite wind turbine blade were peformed using tile finite element method(FEM). In the structural design, the acceptable blade structural configuration was determined through the parametric studies, and the most dominant design parameters were confirmed. In the stress analysis using the FEM, it was confirmed that the blade structure was safe and stable in any various load cases Moreover the safety of the blade root joint with insert bolts, newly devised in this study, was checked against the design fond and the fatigue.

  • PDF