• 제목/요약/키워드: fatigue root fracture

검색결과 36건 처리시간 0.022초

지상보수교육강좌 1 - 피로 치근파절 치아의 분석 (Analysis of teeth with a fatigue root fracture)

  • 이학철;류인철
    • 대한치과의사협회지
    • /
    • 제48권2호
    • /
    • pp.140-145
    • /
    • 2010
  • True vertical root fracture (VRF) in nonendodontically treated teeth confined to the root surface (fatigue root fracture; FRF) is apparently uncommon, the few documented reports being Chinese. The aim of this study is to analyze the cases of a fatigue root fracture and to find out the characteristic features of teeth with a FRF. A total of 21 consecutive cases of fatigue root fracture occurring in 16 patients were reviewed. In terms of the occlusion, the presence of restorations, the location, the age and gender, each tooth and patient were analyzed. The prevalent age was in those over 50 years of age (75%) and FRFs were more frequent in male patients (69%). Fatigue root fractures occurred most frequently in the mandibular molars (61.9%; 42.9% in first molar, 19% in second molar). Fatigue root fractures were observed most frequently in the teeth with no restorations (85.7%) and in the patients with occlusal problems (94%). FRFs seem to occur frequently and may represent an undiagnosed clinical entity deserving of our attention.

십자형 필렛 용접 이음의 피로균열 에 대한 파괴 역학적 고찰 (A Study on the fracture Mechanical Behavior of Cruciform Welded Joint With Fracture Cracks)

  • 엄동석;강성원;유덕상
    • Journal of Welding and Joining
    • /
    • 제1권1호
    • /
    • pp.37-46
    • /
    • 1983
  • This paper describes a study of fillet welded joint stressed perpendicular to the weld line. The finite element method was used to determine the stress intensity factor for cruciform joint at weld toe and root cracks according to variation of H/Tp, weld angle and main plate thickness. But, in this study, weld angle was fixed at 45.deg., since the variation of weld angle affect the stress intensity factor little, also main plate thickness was fixed. Pulsating tension fatigue test was done at the second phase of experiment. The work using the concepts of the fracture mechanics on the stable crack growth, was in the correlation of the experimental fatigue stress-life behavior because the fatigue behaviors of various joint geometries are related to the stress intensity factors calculated by F.E.M. analysis. Main results obtained are summarized as follows. 1) According to the propagation of toe crack, the variation of the stress intensity factor at root crack is obvious as H/Tp is smaller. 2) According to the propagation of root cracks, the change of the stress intensity factor of the toe is very large with propagation of root crack. 3) The calculation formula of the stress intensity factor of crack propagation at the root crack was obtained. 4) The calculation formula of the stress intensity factor at the toe cracks was obtained in similar manner. 5) From the results of experiment, the velocity of fatigue crack propagation at the weld toe and root was estimated.

  • PDF

피로하중을 받은 저압 터빈 블레이드의 파손해석에 관한 연구 (A Study on Failure Analysis of Low Pressure Turbine Blade Subject to Fatigue Load)

  • 홍순혁;이동우;조석수;주원식
    • Journal of Welding and Joining
    • /
    • 제19권3호
    • /
    • pp.298-304
    • /
    • 2001
  • Turbine blade is subject to force of three types ; the torsional force by torsional mount, the centrifugal force by the rotation of rotor and the cyclic bending force by steam pressure. The cyclic bending force was a main factor on fatigue strength. SEM fractography in root of turbine blade showed micro-clack width was not dependent on stress intensity factor range. Especially, fatigue did not exist on SEM photograph in root of turbine blade. To clear out the fracture mechanism of turbine blade, nanofractography was needed on 3-dimensional crack initiation and crack growth with high magnification. Fatigue striation partially existed on AFM photograph in root of turbine blade. Therefore, to find a fracture mechanism of the torsion-mounted blade in nuclear power plant, the relation between stress intensity factor range and surface roughness measured by AFM was estimated, and then the load amplitude ΔP applied to turbine blade was predicted exactly by root mean square roughness.

  • PDF

응력확대계수를 이용한 하중 전달형 필릿 용접부의 피로강도 평가에 관한 연구 (A Study on the Fatigue Life Assessment for Load-carrying Fillet Welded Joints using Stress Intensity Factor)

  • 김명현;강성원;김형래
    • Journal of Welding and Joining
    • /
    • 제26권6호
    • /
    • pp.97-102
    • /
    • 2008
  • It is well known that there exist two typical fatigue crack initiation locations in ship structures: one is the weld toe and the other is the weld root where partial penetration weld is performed. In particular, it is important for fillet weldments to avoid weld root cracking in order to prevent catastrophic failure particularly in ship structures. Therefore detail considerations are required for cruciform joints with partial penetration when there is a possibility of weld root crack initiation. For these reasons, fatigue tests on welded joints were performed in this study. Concept of stress intensity factor(SIF) by means of fracture mechanics is applied for predicting fatigue life of fillet welded joints.

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

Selection of Nickel-Titanium Files according to the Clinical Procedure and Factors of File Fracture: A Narrative Review

  • Hyeon-Cheol, Kim
    • Journal of Korean Dental Science
    • /
    • 제15권2호
    • /
    • pp.112-120
    • /
    • 2022
  • In this article, the contemporary root canal treatment procedure using nickel-titanium (NiTi) instruments was reviewed to understand the correlations between the properties of files and safety of the clinical usage. Literatures were reviewed according to the process of clinical procedure of the root canal preparation, mainly for shaping during orifice flaring, glide-path preparation, and main canal instrumentation. Considering the reasons for NiTi file fracture, clinically implacable issues and ideas were discussed to reduce the fracture risk and increase clinical efficiency of the NiTi file systems. Various kinds of NiTi file systems have their own characteristics and properties given from their geometries and heat treatments and so on. Proper selection and careful usage of the NiTi file systems may reduce the risk of file fracture and increase the efficiency of NiTi file systems. Understanding of the clinical implications from the mechanical properties and characteristics of the engine driven NiTi instruments may decrease the risk of NiTi file fractures and increase the success rate in root canal treatment.

연성 균열성장 개시의 미시적 파괴조건 (Microscopic fracture criterion of crack growth initiation)

  • 구인회
    • 대한기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.740-745
    • /
    • 1987
  • 본 연구에서는 파괴조건(4)와 유사하게 임계 스트레인 조건을 사용하나 기존 스트레인이 없는 재료의 날카로운 균열선단을 가진 시편의 파괴인성실험치(.delta.$_{IC}$)로 부터 재료의 고유상수인 특성길이를 결정하는 방법이 제안되었다.이 파괴조건을 이 용하여 처음노치선단의 유한한 반경과 재료의 기존 스트레인이 시편의 파괴개시에 미 치는 영향을 예측하고자 한다.

니켈티타늄 전동파일 파절의 예방 및 처치 (Prevention and Solution of the Fracture of Nickel-Titanium Endodontic Instruments)

  • 김현철
    • 대한치과의사협회지
    • /
    • 제54권8호
    • /
    • pp.640-650
    • /
    • 2016
  • Nickel-Titanium (NiTi) rotary instruments have brought a big step toward "efficient" practice of endodontic procedure. The rotary files help clinicians to reduce their working time and also increase the clinical success rate with minimal procedural errors. However, NiTi instruments still have a few drawbacks including unpredictable fatigue fracture. Clinicians may reduce the potential risk of instruments fracture by following some clinical guidelines for rotary instruments. In some clinical cases of instruments fracture, we may try to remove the instruments' fragments or bypass the fragment to reach the apical canal. In some limited cases, the fractured instruments' fragments would not jeopardize the clinical prognosis of root canal treatment. Nevertheless, it is impossible to be overemphasized that the prevention of file fracture is much easier than the removal of fracture fragment. Clinicians need to understand the fracture mechanisms and, in clinic, need to discard the used instruments timely.

  • PDF

임상가를 위한 특집 1 - 니켈티타늄 전동파일의 파절과 임상적 예후 (Fracture of Nickel-Titanium Rotary Instruments and its Clinical Prognosis)

  • 김현철
    • 대한치과의사협회지
    • /
    • 제52권2호
    • /
    • pp.60-68
    • /
    • 2014
  • Nickel-Titanium(NiTi) rotary instruments have brought a big step toward "efficient" practice of endodontic procedure. The rotary files help clinicians to reduce their working time and also increase the clinical success rate with minimal procedural errors by stainless steel instruments. In spite of these advantages, NiTi instruments still have a few drawbacks including unpredictable fatigue fracture. Clinicians may reduce the potential risk of instruments fracture by following some clinical guidelines for rotary instruments. In some clinical cases of instruments fracture, we may try to remove the instruments' fragments or bypass the fragment to reach the apical canal. In some limited cases, the fractured instruments' fragments would not jeopardize the clinical prognosis of root canal treatment. However, it is impossible to be overemphasized that the fragment removal is more difficult than the prevention of fracture. Clinicians need to understand the fracture mechanisms and, in clinic, need to discard the used instruments timely.

십자형 필릿 용접부에서 재료 두께 및 용접 층수에 따른 피로파괴 특성 (Characteristics of Fatigue Failure according to Thickness of Material and Number of Passes in Cruciform Fillet Weld Zone)

  • 이용복
    • Journal of Welding and Joining
    • /
    • 제28권6호
    • /
    • pp.45-50
    • /
    • 2010
  • Most of joining processes for machine and steel structure are performed by butt and fillet welding. The mechanical properties and fatigue strength of their welding zone can be effected largely by the differential of generated heat and changes of grain size according to thickness of material and number of passes in welding process. In this study, it was investigated about characteristics of fatigue failure according to thickness of material and number of passes in cruciform fillet weld zone as the basic study for safe and economic design of welding structures. Fracture modes in cruciform fillet weld zone are classified into toe failure and root failure according to non-penetrated depth. It can be accomplished economic design of welding structures considering fatigue strength when the penetrated depth in fillet weld zone is controled properly.