DOI QR코드

DOI QR Code

Selection of Nickel-Titanium Files according to the Clinical Procedure and Factors of File Fracture: A Narrative Review

  • Hyeon-Cheol, Kim (Department of Conservative Dentistry, Dental and Life Science Institute, Dental Research Institute, Pusan National University School of Dentistry)
  • 투고 : 2022.11.28
  • 심사 : 2022.12.13
  • 발행 : 2022.12.30

초록

In this article, the contemporary root canal treatment procedure using nickel-titanium (NiTi) instruments was reviewed to understand the correlations between the properties of files and safety of the clinical usage. Literatures were reviewed according to the process of clinical procedure of the root canal preparation, mainly for shaping during orifice flaring, glide-path preparation, and main canal instrumentation. Considering the reasons for NiTi file fracture, clinically implacable issues and ideas were discussed to reduce the fracture risk and increase clinical efficiency of the NiTi file systems. Various kinds of NiTi file systems have their own characteristics and properties given from their geometries and heat treatments and so on. Proper selection and careful usage of the NiTi file systems may reduce the risk of file fracture and increase the efficiency of NiTi file systems. Understanding of the clinical implications from the mechanical properties and characteristics of the engine driven NiTi instruments may decrease the risk of NiTi file fractures and increase the success rate in root canal treatment.

키워드

과제정보

This work was supported by a 2-year Research Grant from Pusan National University, Busan, South Korea.

참고문헌

  1. Walia HM, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of Nitinol root canal files. J Endod. 1988; 14: 346-51. https://doi.org/10.1016/S0099-2399(88)80196-1
  2. Schafer E, Schulz-Bongert U, Tulus G. Comparison of hand stainless steel and nickel titanium rotary instrumentation: a clinical study. J Endod. 2004; 30: 432-5. https://doi.org/10.1097/00004770-200406000-00014
  3. Lee W, Song M, Kim E, Lee H, Kim HC. A survey of experience-based preference of Nickel-Titanium rotary files and incidence of fracture among general dentists. Restor Dent Endod. 2012; 37: 201-6. https://doi.org/10.5395/rde.2012.37.4.201
  4. Cheung GSP. Instrument fracture: mechanisms, removal of fragments, and clinical outcomes. Endod Top. 2007; 16: 1-26.
  5. Cheung GS, Liu CS. A retrospective study of endodontic treatment outcome between nickel-titanium rotary and stainless steel hand filing techniques. J Endod. 2009; 35: 938-43.
  6. Pruett JP, Clement DJ, Carnes DL Jr. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod. 1997; 23: 77-85. https://doi.org/10.1016/S0099-2399(97)80250-6
  7. Ha JH, Kim SK, Cheung GS, Jeong SH, Bae YC, Kim HC. Effect of alloy type on the life-time of torsion-preloaded nickel-titanium endodontic instruments. Scanning. 2015; 37: 172-8. https://doi.org/10.1002/sca.21195
  8. Yum J, Cheung GS, Park JK, Hur B, Kim HC. Torsional strength and toughness of nickel-titanium rotary files. J Endod. 2011; 37: 382-6. https://doi.org/10.1016/j.joen.2010.11.028
  9. Kim JY, Cheung GS, Park SH, Ko DC, Kim JW, Kim HC. Effect from cyclic fatigue of nickel-titanium rotary files on torsional resistance. J Endod. 2012; 38: 527-30. https://doi.org/10.1016/j.joen.2011.12.018
  10. Cheung GS, Oh SH, Ha JH, Kim SK, Park SH, Kim HC. Effect of torsional loading of nickel-titanium instruments on cyclic fatigue resistance. J Endod. 2013; 39: 1593-7. https://doi.org/10.1016/j.joen.2013.07.032
  11. Pedulla E, La Rosa GRM, Boninelli S, Rinaldi OG, Rapisarda E, Kim HC. Influence of different angles of file access on cyclic fatigue resistance of reciproc and reciproc blue instruments. J Endod. 2018; 44: 1849-55. https://doi.org/10.1016/j.joen.2018.08.012
  12. Ataya M, Ha JH, Kwak SW, Abu-Tahun IH, El Abed R, Kim HC. Mechanical properties of orifice preflaring nickel-titanium rotary instrument heat treated using T-wire technology. J Endod. 2018; 44: 1867-71. https://doi.org/10.1016/j.joen.2018.08.016
  13. Pedulla E, La Rosa GRM, Virgillito C, Rapisarda E, Kim HC, Generali L. Cyclic fatigue resistance of nickel-titanium rotary instruments according to the angle of file access and radius of root canal. J Endod. 2020; 46: 431-6. https://doi.org/10.1016/j.joen.2019.11.015
  14. Ha JH, Kim SK, Kwak SW, El Abed R, Bae YC, Kim HC. Debris extrusion by glide-path establishing endodontic instruments with different geometries. J Dent Sci. 2016; 11: 136-40. https://doi.org/10.1016/j.jds.2016.03.002
  15. Kwak SW, Ha JH, Cheung GS, Kim HC, Kim SK. Effect of the glide path establishment on the torque generation to the files during instrumentation: an in vitro measurement. J Endod. 2018; 44: 496-500. https://doi.org/10.1016/j.joen.2017.09.016
  16. Lee JY, Kwak SW, Ha JH, Abu-Tahun IH, Kim HC. Mechanical properties of various glide path preparation nickel-titanium rotary instruments. J Endod. 2019; 45: 199-204. https://doi.org/10.1016/j.joen.2018.10.017
  17. Sung SY, Ha JH, Kwak SW, Abed RE, Byeon K, Kim HC. Torsional and cyclic fatigue resistances of glide path preparation instruments: G-file and PathFile. Scanning. 2014; 36: 500-6. https://doi.org/10.1002/sca.21145
  18. Baek SH, Lee CJ, Versluis A, Kim BM, Lee W, Kim HC. Comparison of torsional stiffness of nickel-titanium rotary files with different geometric characteristics. J Endod. 2011; 37: 1283-6. https://doi.org/10.1016/j.joen.2011.05.032
  19. Ha JH, Lee CJ, Kwak SW, El Abed R, Ha D, Kim HC. Geometric optimization for development of glide path preparation nickel-titanium rotary instrument. J Endod. 2015; 41: 916-9. https://doi.org/10.1016/j.joen.2015.01.025
  20. Kwak SW, Ha JH, Lee CJ, El Abed R, Abu-Tahun IH, Kim HC. Effects of pitch length and heat treatment on the mechanical properties of the glide path preparation instruments. J Endod. 2016; 42: 788-92. https://doi.org/10.1016/j.joen.2016.02.002
  21. Al Raeesi D, Kwak SW, Ha JH, Sulaiman S, El Abed R, Kim HC. Mechanical properties of glide path preparation instruments with different pitch lengths. J Endod. 2018; 44: 864-8. https://doi.org/10.1016/j.joen.2018.01.022
  22. Kwak SW, Ha JH, Lee W, Kim SK, Kim HC. Buckling resistance, bending stiffness, and torsional resistance of various instruments for canal exploration and glide path preparation. Restor Dent Endod. 2014; 39: 270-5. https://doi.org/10.5395/rde.2014.39.4.270
  23. Ha JH, Kwak SW, Versluis A, Kim HC. Buckling resistance of various nickel-titanium glide path preparation instruments in dynamic or static mode. J Endod. 2020; 46: 1125-9. https://doi.org/10.1016/j.joen.2020.05.006
  24. Ha JH, Jeon HJ, Abed RE, Chang SW, Kim SK, Kim HC. Effect of repetitive pecking at working length for glide path preparation using G-file. Restor Dent Endod. 2015; 40: 123-7.
  25. Abu-Tahun IH, Kwak SW, Ha JH, Sigurdsson A, Kayahan MB, Kim HC. Effective establishment of glide-path to reduce torsional stress during nickel-titanium rotary instrumentation. Materials (Basel). 2019; 12: 493. https://doi.org/10.3390/ma12030493
  26. Kwak SW, Ha JH, Shen Y, Haapasalo M, Kim HC. Comparison of the effects from coronal pre-flaring and glide-path preparation on torque generation during root canal shaping procedure. Aust Endod J. 2022; 48: 131-7.
  27. Ha JH, Park SS. Influence of glide path on the screw-in effect and torque of nickel-titanium rotary files in simulated resin root canals. Restor Dent Endod. 2012; 37: 215-9. https://doi.org/10.5395/rde.2012.37.4.215
  28. Kim HC, Kim HJ, Lee CJ, Kim BM, Park JK, Versluis A. Mechanical response of nickel-titanium instruments with different cross-sectional designs during shaping of simulated curved canals. Int Endod J. 2009; 42: 593-602. https://doi.org/10.1111/j.1365-2591.2009.01553.x
  29. Shen Y, Zhou HM, Zheng YF, Peng B, Haapasalo M. Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J Endod. 2013; 39: 163-72. https://doi.org/10.1016/j.joen.2012.11.005
  30. Kim HC, Yum J, Hur B, Cheung GS. Cyclic fatigue and fracture characteristics of ground and twisted nickel-titanium rotary files. J Endod. 2010; 36: 147-52. https://doi.org/10.1016/j.joen.2009.09.037
  31. Ha JH, Kim SK, Cohenca N, Kim HC. Effect of R-phase heat treatment on torsional resistance and cyclic fatigue fracture. J Endod. 2013; 39: 389-93. https://doi.org/10.1016/j.joen.2012.11.028
  32. Goo HJ, Kwak SW, Ha JH, Pedulla E, Kim HC. Mechanical properties of various heat-treated nickeltitanium rotary instruments. J Endod. 2017; 43: 1872-7. https://doi.org/10.1016/j.joen.2017.05.025
  33. Pedulla E, Lo Savio F, Boninelli S, Plotino G, Grande NM, La Rosa G, Rapisarda E. Torsional and cyclic fatigue resistance of a new nickel-titanium instrument manufactured by electrical discharge machining. J Endod. 2016; 42: 156-9. https://doi.org/10.1016/j.joen.2015.10.004
  34. Oh SH, Ha JH, Kwak SW, Ahn SW, Lee W, Kim HC. The effects of torsional preloading on the torsional resistance of nickel-titanium instruments. J Endod. 2017; 43: 157-62.
  35. Isik V, Kwak SW, Abu-Tahun IH, Ha JH, Kayahan MB, Kim HC. Effect of shaft length on the torsional resistance of rotary nickel-titanium instruments. J Endod. 2020; 46: 295-300.
  36. Gambarini G, Seracchiani M, Zanza A, Miccoli G, Del Giudice A, Testarelli L. Influence of shaft length on torsional behavior of endodontic nickel-titanium instruments. Odontology. 2021; 109: 568-73. https://doi.org/10.1007/s10266-020-00572-2
  37. Ha JH, Kwak SW, Kim SK, Sigurdsson A, Kim HC. Effect from rotational speed on torsional resistance of the nickel-titanium instruments. J Endod. 2017; 43: 443-6. https://doi.org/10.1016/j.joen.2016.10.032
  38. Kitchens GG Jr, Liewehr FR, Moon PC. The effect of operational speed on the fracture of nickel-titanium rotary instruments. J Endod. 2007; 33: 52-4. https://doi.org/10.1016/j.joen.2006.09.004
  39. Yared G. Canal preparation using only one Ni-Ti rotary instrument: preliminary observations. Int Endod J. 2008; 41: 339-44. https://doi.org/10.1111/j.1365-2591.2007.01351.x
  40. Kim HC, Kwak SW, Cheung GS, Ko DH, Chung SM, Lee W. Cyclic fatigue and torsional resistance of two new nickel-titanium instruments used in reciprocation motion: Reciproc versus WaveOne. J Endod. 2012; 38: 541-4. https://doi.org/10.1016/j.joen.2011.11.014
  41. You SY, Kim HC, Bae KS, Baek SH, Kum KY, Lee W. Shaping ability of reciprocating motion in curved root canals: a comparative study with micro-computed tomography. J Endod. 2011; 37: 1296-300. https://doi.org/10.1016/j.joen.2011.05.021
  42. Ahn SY, Kim HC, Kim E. Kinematic effects of nickel-titanium instruments with reciprocating or continuous rotation motion: a systematic review of in vitro studies. J Endod. 2016; 42: 1009-17. https://doi.org/10.1016/j.joen.2016.04.002
  43. Choi DM, Kim JW, Park SH, Cho KM, Kwak SW, Kim HC. Vibrations generated by several nickel-titanium endodontic file systems during canal shaping in an ex vivo model. J Endod. 2017; 43: 1197-200. https://doi.org/10.1016/j.joen.2017.03.010
  44. Kwak SW, Ha JH, Cheung GS, Kim SK, Kim HC. Comparison of in vitro torque generation during instrumentation with adaptive versus continuous movement. J Endod. 2019; 45: 803-7. https://doi.org/10.1016/j.joen.2019.02.010
  45. Pedulla E, Plotino G, Grande NM, Avarotti G, Gambarini G, Rapisarda E, Mannocci F. Shaping ability of two nickel-titanium instruments activated by continuous rotation or adaptive motion: a microcomputed tomography study. Clin Oral Investig. 2016; 20: 2227-33. https://doi.org/10.1007/s00784-016-1732-4
  46. Lee JY, Kwak SW, Ha JH, Kim HC. Ex-vivo comparison of torsional stress on nickel-titanium instruments activated by continuous rotation or adaptive motion. Materials (Basel). 2020; 13: 1900. https://doi.org/10.3390/ma13081900
  47. Kimura S, Ebihara A, Maki K, Nishijo M, Tokita D, Okiji T. Effect of optimum torque reverse motion on torque and force generation during root canal instrumentation with crown-down and single-length techniques. J Endod. 2020; 46: 232-7. https://doi.org/10.1016/j.joen.2019.11.007
  48. Pedulla E, Corsentino G, Ambu E, Rovai F, Campedelli F, Rapisarda S, La Rosa GR, Rapisarda E, Grandini S. Influence of continuous rotation or reciprocation of Optimum Torque Reverse motion on cyclic fatigue resistance of nickel-titanium rotary instruments. Int Endod J. 2018; 51: 522-8. https://doi.org/10.1111/iej.12769
  49. Kyaw MS, Ebihara A, Kasuga Y, Maki K, Kimura S, Htun PH, Nakatsukasa T, Okiji T. Influence of rotational speed on torque/force generation and shaping ability during root canal instrumentation of extracted teeth with continuous rotation and optimum torque reverse motion. Int Endod J. 2021; 54: 1614-22. https://doi.org/10.1111/iej.13485
  50. Kwak SW, Ha JH, Shen Y, Haapasalo M, Kim HC. Effects of root canal curvature and mechanical properties of nickel-titanium files on torque generation. J Endod. 2021; 47: 1501-6. https://doi.org/10.1016/j.joen.2021.06.019
  51. Kwak SW, Lee CJ, Kim SK, Kim HC, Ha JH. Comparison of screw-in forces during movement of endodontic files with different geometries, alloys, and kinetics. Materials (Basel). 2019; 12: 1506. https://doi.org/10.3390/ma12091506