• Title/Summary/Keyword: fatigue of concrete

Search Result 475, Processing Time 0.027 seconds

A Study on the Strength and Drying Shrinkage Crack Control Characteristics of Polypropylene Fiber Reinforced Concrete (폴리프로필렌 섬유보강 콘크리트의 강도 및 건조수축균열 제어특성 연구)

  • 오병환;이명규;유성원;백상현
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.151-161
    • /
    • 1996
  • Recently, polypropylene fiber reinforced mortar and concrete as civil and architectural materials have been used in major countries in the world. Polypropylene fiber reinforced concrete has many advantages in terms of economical aspect, chemical stability and durability. It has been reported that polypropylene fiber can control restrained tensile stresses and cracks and increase toughness, resistance to impact, corrosion, fatigue and durability. The purpose of the present study is, therefore, to investigate the strength as well as many mechanical characteristics including toughness and shrinkage control properties. A specially devjsed shrinkage test has been applied to measure the crack control characteristics of polypropylene fiber reinforced concrete. The present study indicates that the polypropylene fiber reinforced concrete curbs greatly the crack occurrence due to shrinkage and enhances toughness resistance. The present study provides a firm base for the efficient use of polypropylene fiber reinforced concrete in actual construction such as pavements and slab structures.

An Effect of Steel Corrosion on Bond Stress-slip Relationship under Repeated Loading (반복하중하의 부착응력-슬립 관계에 미치는 철근 부식의 영향)

  • Kim, Chul-Min;Park, Jong-Bum;Chang, Sung-Pil;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.179-186
    • /
    • 2010
  • The bond between steel and concrete in reinforced concrete members is essential to resist external load, but the bond mechanism in reinforced concrete beams deteriorated by steel corrosion has not been clearly known yet. Most existing researches have dealt with the bond behavior of corroded steel under monotonic loading, but scarce are researches dealing with bond behavior of corroded steel under repeated loading. This study includes the experimental investigation on the bond behavior with respect to the various degrees of steel corrosion under repeated loading. According to the test results, the bond strength of corroded steel under monotonic loading increases as the rate of steel corrosion increases unless the splitting crack occurs. The slip versus number of load cycles relation was found to be approximately linear in double logarithmic scale, not only in specimens without steel corrosion but also in specimens with steel corrosion. The test results also show that the steel corrosion does not negatively affect the bond strength of corroded steel after repeated loading unless the splitting crack occurs. But the fatigue life decreases sharply after splitting crack occurs. This research will be helpful for the realistic durability design and condition assessment of reinforced concrete structures.

Evaluating a Load Limit on Heavy Vehicles in Flexible Pavements (아스팔트 포장구조체에 대한 중차량 제한하중 평가)

  • Park, Seong-Wan;Hwang, Jung Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1D
    • /
    • pp.53-60
    • /
    • 2010
  • The objective of this paper is to evaluate a performance-based load zoning procedure in flexible pavements. Long-term performance in flexible pavements will be evaluated using VESYS type rutting model and Miner s theory on fatigue cracking. Permanent deformation properties such as alpha and gnu, and fatigue cracking properties such as k1 and k2 in asphalt concrete were used respectively. The data from the literatures were also used in predicting performance in flexible pavements for evaluating load restrictions as well as parametric study. Finally, a performance-based load zoning procedure and a simple load limit procedure for load zoning were assessed.

A probabilistic analysis of Miner's law for different loading conditions

  • Blason, Sergio;Correia, Jose A.F.O.;Jesus, Abilio M.P. De;Calcada, Rui A.B.;Fernandez-Canteli, Alfonso
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.71-90
    • /
    • 2016
  • In this paper, the normalized variable V=(log N-B)(log ${\Delta}{\sigma}-C$-C), as derived from the probabilistic S-N field of Castillo and Canteli, is taken as a reference for calculation of damage accumulation and probability of failure using the Miner number in scenarios of variable amplitude loading. Alternative damage measures, such as the classical Miner and logarithmic Miner, are also considered for comparison between theoretical lifetime prediction and experimental data. The suitability of this approach is confirmed for it provides safe lifetime prediction when applied to fatigue data obtained for riveted joints made of a puddle iron original from the Fao bridge, as well as for data from experimental programs published elsewhere carried out for different materials (aluminium and concrete specimens) under distinct variable loading histories.

Structural behavior of precast concrete deck with ribbed loop joints in a composite bridge

  • Shin, Dong-Ho;Chung, Chul-Hun;Oh, Hyun-Chul;Park, Se-Jin;Kim, In-Gyu;Kim, Young-Jin;Byun, Tae-Kwan;Kang, Myoung-Gu
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.559-576
    • /
    • 2016
  • This study is intended to propose a precast bridge deck system, which has ribbed loop joints between the decks and lacks internal tendons to improve the workability of existing precast deck system. A composite bridge deck specimen was fabricated using the proposed precast deck system, and static and fatigue load tests were conducted to evaluate the structural behavior and the crack pattern of the deck. Leakage test of the deck joints was also conducted and finite element analysis was carried out to compare with the test results.

Nonlinear finite element analysis of ultra-high performance fiber reinforced concrete beams subjected to impact loads

  • Demirtas, Gamze;Caglar, Naci;Sumer, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.81-92
    • /
    • 2022
  • Ultra-high performance fiber reinforced concrete (UHPFRC) is a composite building material with high ductility, fatigue resistance, fracture toughness, durability, and energy absorption capacity. The aim of this study is to develop a nonlinear finite element model that can simulate the response of the UHPFRC beam exposed to impact loads. A nonlinear finite element model was developed in ABAQUS to simulate the real response of UHPFRC beams. The numerical results showed that the model was highly successful to capture the experimental results of selected beams from the literature. A parametric study was carried out to investigate the effects of reinforcement ratio and impact velocity on the response of the UHPFRC beam in terms of midpoint displacement, impact load value, and residual load-carrying capacity. In the parametric study, the nonlinear analysis was performed in two steps for 12 different finite element models. In the first step, dynamic analysis was performed to monitor the response of the UHPFRC beam under impact loads. In the second step, static analysis was conducted to determine the residual load-carrying capacity of the beams. The parametric study has shown that the reinforcement ratio and the impact velocity affect maximum and residual displacement value substantially.

Shear capacity of stud shear connectors with initial damage: Experiment, FEM model and theoretical formulation

  • Qi, Jianan;Wang, Jingquan;Li, Ming;Chen, Leilei
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.79-92
    • /
    • 2017
  • Initial damage to a stud due to corrosion, fatigue, unexpected overloading, a weld defect or other factors could degrade the shear capacity of the stud. Based on typical push-out tests, a FEM model and theoretical formulations were proposed in this study. Six specimens with the same geometric dimensions were tested to investigate the effect of the damage degree and location on the static behavior and shear capacity of stud shear connectors. The test results indicated that a reduction of up to 36.6% and 62.9% of the section area of the shank could result in a dropping rate of 7.9% and 57.2%, respectively, compared to the standard specimen shear capacity. Numerical analysis was performed to simulate the push-out test and validated against test results. A parametrical study was performed to further investigate the damage degree and location on the shear capacity of studs based on the proposed numerical model. It was demonstrated that the shear capacity was not sensitive to the damage degree when the damage section was located at 0.5d, where d is the shank diameter, from the stud root, even if the stud had a significant reduction in area. Finally, a theoretical formula with a reduction factor K was proposed to consider the reduction of the shear capacity due to the presence of initial damage. Calculating K was accomplished in two ways: a linear relationship and a square relationship with the damage degree corresponding to the shear capacity dominated by the section area and the nominal diameter of the damaged stud. This coefficient was applied using Eurocode 4, AASHTO LRFD (2014) and GB50017-2003 (2003) and compared with the test results found in the literature. It was found that the proposed method produced good predictions of the shear capacity of stud shear connectors with initial damage.

Research of Stresses Distribution and Loading Weight on Concrete Electric Pole Considering Field Condition (설치조건을 고려한 배전용 콘크리트전주의 응력분포 및 하중에 관한 연구)

  • Kim, Dong-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.183-188
    • /
    • 2004
  • A method of double-pole construction is developing to strengthen the mechanical intensity of the electric poles. Therefore the mechanical properties of the double-pole were researched in this paper. First, considering field special quality electric poles were established. In the next tensile force was applied and stress distribution and fatigue load were examined. When a base of the pole is concrete, mechanical intensity of the double-pole increased about 1.7 times compared a single pole. In the case of general soil base, the concrete base should be needed to expect the reinforcement effect of the double-pole.

An Experimental Study for Flexural Bonding Characteristic of GFRP Rebar (GFRP 보강근의 휨.부착특성에 관한 실험적 연구)

  • Sim, Jong-Ung;Oh, Hong-Secb;Ju, Min-Kwan;Kang, Tae-Sung;Kim, Woo-Jung;Lee, Won-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.282-285
    • /
    • 2006
  • This study is to examine bond strength of beam reinforced with GFRP rebar under 4-point bending test by adopting BRITISH STANDARD. The variables were made to have bonding length of 5times$(5d_b)$, 10times$(10d_b)$ and 15times$(15d_b)$ of the nominal diameter of GFRP rebar and were done to analyze the relationship between the bonding strength and the slip. In the result of the test, pull-out failure was dominant in the $5d_b$ and $10d_b$ specimen, both patterns of the pull-out failure and concrete splitting failure appeared in the $10d_b$. On the other hand, the $15d_b$ specimen showed only concrete splitting failure at the end of bonding length. Therefore, it was prove that available bonding length of the GFRP rebar under bending condition on static test is over $15d_b$ then farther research such as fatigue bending test, development of bonding model, FEM parameter study should be performed.

  • PDF

Development of Polymer Impregnants and Properties of Polymer Impregnated Concrete (폴리머침투제의 개발과 폴리머침투콘크리트의 특성에 관한 연구)

  • Byun, Keun Joo;Lee, Sang Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.71-84
    • /
    • 1992
  • Polymer-Impregnated Concrete(PIC) is a composite material of concrete and polymer. PIC has superior properties compared to conventional cement concrete, such as strength, stiffness, toughness, durability, water-proofing, chemical resistance. However, the usage of PIC has been limited to repairing materials and non-structural applications due to the lack of the design criteria and the analytical model to determine structural behavior. The objective of this study is experimentally to develop the optimum mixing proportions of polymer impregnants and the stress-strain responses, the strength characteristics, the fatigue and creep behaviors, and the durabilities of MMA(methyl methacrylate)-based PIC.

  • PDF