• 제목/요약/키워드: fatigue lives

검색결과 216건 처리시간 0.135초

$CO_2$ 가스 용접된 강관파일의 피로수명 (Fatigue life estimation of $CO_2$ gas arc welded carbon steel tubes)

  • 이억섭;김동준;김승권
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.665-669
    • /
    • 1997
  • In this study, the fatigue lives of two kinds of specimens made by co/sab 2/ gas were assessed. The materials for two kinds of specimens were taken out of the virgin carbon steel tubes and used carbon steel tubes, respectively. As a result, it was found that the fatigue lives of two groups of specimens were in the same order of magnitude.

  • PDF

Influence of laser peening on fatigue crack initiation of notched aluminum plates

  • Granados-Alejo, Vignaud;Rubio-Gonzalez, Carlos;Parra-Torres, Yazmin;Banderas, J. Antonio;Gomez-Rosas, Gilberto
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.739-748
    • /
    • 2017
  • Notches such as slots are typical geometric features on mechanical components that promote fatigue crack initiation. Unlike for components with open hole type notches, there are no conventional treatments to enhance fatigue behavior of components with slots. In this work we evaluate the viability of applying laser shock peening (LSP) to extend the fatigue life of 6061-T6 aluminum components with slots. The feasibility of using LSP is evaluated not only on damage free notched specimens, but also on samples with previous fatigue damage. For the LSP treatment a convergent lens was used to deliver 0.85 J and 6 ns laser pulses 1.5 mm in diameter by a Q-switch Nd: YAG laser, operating at 10 Hz with 1064 nm of wavelength. Residual stress distribution was assessed by the hole drilling method. A fatigue analysis of the notched specimens was conducted using the commercial code FE-Safe and different multiaxial fatigue criteria to predict fatigue lives of samples with and without LSP. The residual stress field produced by the LSP process was estimated by a finite element simulation of the process. A good comparison of the predicted and experimental fatigue lives was observed. The beneficial effect of LSP in extending fatigue life of notched components with and without previous damage is demonstrated.

콘크리트 휨피로수명의 확률분포 (Probabilistic Distributions of Fatigue Life of Concrete Subjected to Flexural Loading)

  • 오병환;이희택
    • 대한토목학회논문집
    • /
    • 제6권2호
    • /
    • pp.103-109
    • /
    • 1986
  • 본(本) 논문(論文)에서는 작용되는 피로하중의 크기에 따른 콘크리트의 피로수명분포를 연구(硏究)하였다. 콘크리트보에 대하여 휨피로 실험을 수행하였으며, 피로응력의 크기는 세 가지로서 정적휨강도의 각각 85%, 75% 및 65%로 하여 피로수명을 측정하였다. 본 연구의 실험결과 피로하중의 크기에 따라 확률분포함수의 형태가 비교적 크게 달라짐을 발견하였으며, 이것은 콘크리트의 피로신뢰해석시 피로하중의 크기에 대한 영향을 고려해야 함을 말해 주고 있다. 분포매개변수의 결정은 도식법, 모멘트법 및 Maximum Likelihood 방법에 의거하였다. 콘크리트의 휨피로수명의 Weibull 분포(分布) 형상매개변수는 하중의 크기에 따라 2.0~4.0의 범위에 있는 것으로 나타났다.

  • PDF

일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성에 관하여 (Characteristics of Parameters for the Distribution of Fatigue Crack Growth Lives under Constant Stress Intensity Factor Control)

  • 김선진;김영식;정현철
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.301-306
    • /
    • 2002
  • The characteristics of parameters for the probability distribution of fatigue crack growth lives by the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length - the number of cycles curves are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratio of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth lives seems to follow the 3-parameter Wiubull and shows a slight dependence on specimen thickness and stress intensity level. The shape parameter, ${\alpha}$, does not show the dependency of thickness and stress intensity level, but the scale parameter, ${\beta}$, and location parameter, ${\upsilon}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.

  • PDF

Fe-18Mn TWIP강의 Pre-strain에 따른 저주기 및 고주기 피로 수명 예측 모델 (A Prediction Model for Low Cycle and High Cycle Fatigue Lives of Pre-strained Fe-18Mn TWIP Steel)

  • 김용우;이종수
    • 소성∙가공
    • /
    • 제19권1호
    • /
    • pp.11-16
    • /
    • 2010
  • The influence of pre-strain on low cycle fatigue behavior of Fe-18Mn-0.05Al-0.6C TWIP steel was studied by conducting axial strain-controlled tests. As-received plates were deformed by rolling with reduction ratios of 10 and 30%, respectively. A triangular waveform with a constant frequency of 1 Hz was employed for low cycle fatigue test at the total strain amplitudes in the range of ${\pm}0.4\;{\sim}\;{\pm}0.6$ pct. The results showed that low-cycle fatigue life was strongly dependent on the amount of pre-strain as well as the strain amplitude. Increasing the amount of prestrain, the number of reversals to failure was significantly decreased at high strain amplitudes, but the effect was negligible at low strain amplitudes. A new model for predicting fatigue life of pre-strained body has been suggested by adding ${\Delta}E_{pre-strain}$ to the energy-based fatigue damage parameter. Also, high-cycle fatigue lives predicted using the low-cycle fatigue data well agreed with the experimental ones.

몬테카르로 시뮬레이션에 의한 $SIC_w$/Al 복합재료의 피로수명에측 (Fatigue Life Prediction of $SIC_w$/Al Composites by Using the Monte-Carlo Simulation)

  • 안정주;권재도;김상태
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1552-1561
    • /
    • 1996
  • It requires uch time and cost to obtain the fatigue crack growth life and fatigue crack growth path morphlogy from the fatigue crack growth tests. In this study, the Monte-Carlo simulation program was developed to predict the fatigue crack growth lofe and fatigue crack growth path morphology of metal matrix composites. Fatigue crack growth lives of 5%, 10%, 15%, 20%, 25% and 30% $SiC_w$/Al composites were predicted by usign the Monte-Carlo Simulation. And the fatigue crack growth lives of 25% $SiC_w$/Al and Almatrix from Monte-carlo simulation were compared with fatigue life from experiments in order to verify the accuracy of Monte-Carlo Simulation program.

두개의 미소원공결함에서의 피로크랙발생과 전파에 관한 연구 (Fatigue Crack Initiation and Propagation From Two Micro Hole Defects)

  • 송삼홍;배준수
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.842-849
    • /
    • 1997
  • The aim of this study is an investigation of the interaction of two micro hole defects affecting fatigue crack initation life and propagation behavior. The locatio of two micro hole defects was considered as an angle of alignment and the distance between the centers of two micro hole defects. The fatigue cracking behavior is experimented under bending. When micro defects are located close to each other, the fatigue crack initiation lives are varied with their relative locations. In the experiments, the area of local plastic strain strongly played a role in the fatigue crack initiation lives. Therefore we introduce a parameter which contains the plastic deformation area at stress concentrations and propose a fatigue crack initiation life prediction curve. In addition, the directions and propagation rates of fatigue cracks initiated at two micro hole defects are studied experimentally.

피로균열전파수명의 확률분포추정 프로그램 개발 (Development of Probability Distribution Estimation Program for Fatigue Crack Growth Lives)

  • 김선진;안석환;윤성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권5호
    • /
    • pp.1058-1064
    • /
    • 2001
  • In this paper, the development of probability distribution estimation program for fatigue crack growth lives was summarize. The probability distribution estimation program of life was developed to increase the reliability of life estimation. In this study, it is considered that the cause of scatter in fatigue crack growth data is due to material inhomogeneity. The material resistance to fatigue crack growth is modelled as a spatial stochastic process, which varies randomly along the crack path. We developed the GUI program to estimate the probability distribution and reliability using the non-Gaussian stochastic process method. This program can be used for the reliability assessment.

  • PDF

변형률제어 비대칭파형 하의 고온피로수명 및 파면 (High Temperature Fatigue Life and Fractography under Asymmetric Waveform in Strain Control)

  • 허정원;박원조;유재환
    • 한국안전학회지
    • /
    • 제18권1호
    • /
    • pp.38-43
    • /
    • 2003
  • In this paper, the low cycle fatigue(LCF) life tests were carried out under waveforms of asymmetric triangle($4{\times}10^{-3}$ and $4{\times}10^{-10}$ strain rate) and hold-time(1min and 10min) in strain control. In triangular waveform, the fatigue lives of fast-slow waveforms were decreased to about 63-73% and them of slow-fast waveforms were down to about 23-24% compared to them of fast-fast waveforms. The shapes of fracture surfaces were transgranular in fast-fast and fast-slow waveforms and intergranular in slow-fast ones. The fatigue lives of slow-fast waveforms were remarkedly shorter than them of hold-time waveforms even though cycle times of hold time waveforms were longer than them of slow-fast ones. The damage mechanisms of frature surfaces were mixed frature with both transgranular and intergranular, but intergranular fratures were r-type cavity in hold-time waveforms and w-type cavity in slow-fast ones.

균열이 있는 구조물의 형상 최적화 (Shape Optimization of Structures with a Crack)

  • 한석영;송시엽;백춘호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.298-303
    • /
    • 2001
  • Most of mechanical failures are caused by repeated loadings and therefore they are strongly related to fatigue. To avoid the failures caused by fatigue, determination of an optimal shape of a structure is one of the very important factors in the initial design stage. Shape optimization for a compact tension specimen in opening mode in fracture mechanics, was accomplished by the linear elastic fracture mechanics and the growth-strain method in this study. Also shape optimization for a cantilever beam in mixed mode was carried out by the same techniques. The linear elastic fracture mechanics was used to estimate stress intensity factors and fatigue lives. And the growth-strain method was used to optimize the shape of the initial shape of the specimens. From the results of the shape optimization, it was found that shapes of two types of specimens and a cantilever beam optimized by the growth-strain method prolong their fatigue lives very much. Therefore, it was verified that the growth-strain method is an appropriate technique for shape optimization of a structure having a crack.

  • PDF