• Title/Summary/Keyword: fatigue failure load

Search Result 274, Processing Time 0.021 seconds

Design of anchor-bolt for the rail fastening system with baseplate (베이스플레이트식 체결장치의 앵커볼트 설계)

  • Kim, Eun;Jang, Seung-Yup;Cho, Yong-Chin
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.508-513
    • /
    • 2006
  • Anchor bolt in baseplate fastenings on the slab track is an important component to conform placing and safety of fastenings. Due to the way of load transmission control of fastenings, sometimes anchor bolt has to be applied lateral load. So we have to take care for it when we design. Especially, in the case of anchor bolt which is applied loads repeatedly, we have to consider fatigue failure. If parts of machine are damaged in static loads, stress will exceed the yield strength. So parts could be transformed largely. Therefore because they are visible to the naked eyes, we can replace parts before failure. However, because fatigue failure that are invisible to the naked eyes happen unexpectedly, it's very dangerous. To make a reasonable design of anchor bolts, we will analyze them by changing diameters of anchor bolt, quality of insert, initial gap between anchor bolt and insert, the presence of insert, etc. which affect the stresses of anchor bolts. We can get the maximum and minimum amplitude of stress through the modified Goodman diagram or Smith diagram which represents limit of all strengths and stress components to the average stress. We also tried to show the way of examining the expected th life of anchor bolt briefly through considering above.

  • PDF

An Experimental Study on the Flexural Fatigue Behavior of Glass fiber Reinforced Plastec Pipes (유리섬유 보강 플라스틱관의 휨 피로 거동에 관한 실험적 연구)

  • Jang, Dong-Il;Go, Jae-Won
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.219-226
    • /
    • 1994
  • In the comparison result of residual strain calculated from the load-strain curve under the repeated loading cycles, it was found that the larger the laminates is, the larger the stiffness of GFRP pipes under fatigue load is. This phenomenon is true until the fatigue failure. According to the S-N curves drawn by the regression analysis on the fatigue test results, the fatigue strength for percentage of the static ultimate strength increases by increasing the laminates of GFRP pipes. The fatigue strength for 2, 000, 000 repeated loading cycles In GFRP pipes with the laminates varing 15, 25, 35 shows 75.2%, 79.5%, 84.2% on the static ultimate strength, respectively.

  • PDF

An Experimental Study on the Bolted Connection Fatigue Capacity of Corrugated Steel Plates (파형강판 볼트 이음부의 피로성능에 관한 실험적 연구)

  • Oh, Hong-Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.54-63
    • /
    • 2014
  • Corrugated steel plate structure, which is built by assembling corrugated steel plate segments with bolts on site and filling the surroundings with quality soil, is widely used for buried structures as a eco-corridors, small bridges, and closed conduits. This experimental study is dealt with the static and fatigue performance of bolt connected corrugated steel plates under flexural loading. The experimental variables to verify the fatigue performance are bolt diameters and detailing of connection such as washer and the corrugation dimension of specimens has a $400{\times}150$ mm. The experimental ultimate strength of specimens under static loading was higher than the theoretical strength and all specimen failed by a bearing and tearing failure of bolt hole of upper plate. Therefore, a fatigue tests of specimens had 6.0mm and 7.0mm thickness was conducted in which the load range was up to 209kN and 516kN, respectively. From the fatigue test, failure patterns are changed from plate bearing and tearing which is a typical failure pattern of static failure to a bearing failure of plate and shear failure of bolt, and experimental fatigue limit at $2{\times}10^6$cycles is about 85MPa.

Fatigue experiment of stud welded on steel plate for a new bridge deck system

  • Ahn, Jin-Hee;Kim, Sang-Hyo;Jeong, Youn-Ju
    • Steel and Composite Structures
    • /
    • v.7 no.5
    • /
    • pp.391-404
    • /
    • 2007
  • This paper presents push-out tests of stud shear connectors to examine their fatigue behavior for developing a new composite bridge deck system. The fifteen push-out specimens of D16 mm stud welded on 9 mm steel plate were fabricated according to Eurocode-4, and a series of fatigue endurance test and residual strength test were performed. Additionally, the stiffness and strength variations by cyclic loading were compared. The push-out test, when the stiffness reduction ratio of the specimens was 0.95 under cyclic load, resulted in the failure of the studs. The stiffness variation of the push-out specimens additionally showed that the application of cyclic loads reduced the residual strength. The fatigue strength of the shear connectors were compared with the design values specified in the Eurocode-4, ASSHTO LRFD and JSSC codes. The comparison result showed that the fatigue endurance of the specimens satisfies the design values of these codes.

Bond Stress-Slip Model of Reinforced Concrete Member under Repeated Loading (반복하중을 받는 철근콘크리트 부재의 부착응력-슬립 모델)

  • Oh, Byung-Hwan;Kim, Se-Hoon;Kim, Ji-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.104-107
    • /
    • 2004
  • The crack widths of reinforced concrete flexural members are influenced by repetitive fatigue loadings. The bond stress-slip relation is necessary to estimate these crack widths realistically. The purpose of the present study is, therefore, to propose a realistic model for bond stress-slip relation under repeated loading. To this end, several series of tests were conducted to explore the bond-slip behavior under repeated loadings. Three different bond stress levels with various number of load cycles were considered in the tests. The present tests indicate that the bond strength and the slip at peak bond stress are not influenced much by repeated loading if bond failure does not occur. However, the values of loaded slip and residual slip increase with the increase of load cycles. The bond stress after repeated loading approaches the ultimate bond stress under monotonic loading and the increase of bond stress after repeated loading becomes sharper as the number of repeated loads increases. The bond stress-slip relation after repeated loading was derived as a function of residual slip, bond stress level, and the number of load cycles. The models for slip and residual slip were also derived from the present test data. The number of cycles to bond slip failure was derived on the basis of safe fatigue criterion, i.e. maximum slip criterion at ultimate bond stress.

  • PDF

Life Prediction by Lethargy Coefficient under Dynamic Load (동적인장하중시 무기력상수에 의한 수명 예측)

  • Kwon, S.J.;Song, J.H.;Kang, H.Y.;Yang, S.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.91-98
    • /
    • 1997
  • Because of a complicated behavior of fatigue in mechanical structures, the analysis of fatigue is in need of much researches on life prediction. A method is developed for the dynamic tensile strength analysis by simple tensile test, which is for the failure life prediction by lethargy coefficient of various materials. Then it is programed to analyze the failure life prediction of mechanical system by virtue of fracture. Thus the dynamic tensile strength analysis is performed to evaluate life parameters as a numerical example, using the developed method.

  • PDF

Design of exhaust manifold for pulse converters considering fatigue strength due to vibration

  • Cho, Kyung-Sang;Son, Kyung-Bin;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.694-700
    • /
    • 2013
  • The design of the exhaust manifold for the pulse converters of a 4 strokes high power medium-speed diesel engine is presented in terms of fatigue analysis. The said system undergoes thermal expansion due to high temperature of exhaust gas and is exposed to intrinsic vibration of the internal combustion engine. Moreover, the exhaust pulse generates pressure pulsating along the runner inside manifold. Under such circumstances, the design and construction of exhaust manifold must be carried out in a way to prevent early failure due to fracture. To validate the design concept, a test rig was developed to simulate the combination of thermal and vibrational movements, simultaneously. Experimental results showed that a certain sense of reliability can be achieved by considering a field factor obtained from the results of engine bench tests.

Analyzing the Fatigue Cracking and Maintenance of Asphalt Concrete Pavements, Based on Harmony Search Algorithm (하모니 검색 알고리즘을 이용한 피로균열의 포장설계 및 유지보수 시기 결정)

  • Lee, Sang-Yum;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.115-120
    • /
    • 2014
  • PURPOSES : This research describes how to predict the life cycles of fatigue cracking based on NCHRP Report 704 as well as modified harmony search (MHS) algorithm. METHODS : The fatigue cracking regression model of NCHRP Report 704 was used in order to calculate the ESAL (Equivalent Single Axle Load) numbers up to pavement failure, based on using material parameters, composite modulus, and surface pavement thickness. Furthermore, the MHS algorithm was implemented to find appropriate material parameters and other structural conditions given the number of ESALs, which is related to pavement service life. RESULTS : The case studies show that the material and structural parameters can be obtained, resulting in satisfying the failure endurance of asphalt concrete structure, given the number of ESALs. For example, the required ESALs such as one or two millions are targeted to satisfy the service performance of asphalt concrete pavements in this study. CONCLUSIONS : According to the case studies, It can be concluded that the MHS algorithm provides a good tool of optimization problems in terms of minimizing the difference between the required service cycles, which is a given value, and the calculated service cycles, which is obtained from the fatigue cracking regression model.

The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient (구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석)

  • 양성모;송준혁;강희용;노홍길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

Fatigue Life Evaluation of Turbine Shaft Using Applied Shaft Stress (회전체 스트레스 정보를 이용한 터빈 축 피로수명 평가)

  • Jin, Byeong Kyou;Park, Ki Beom;Chai, JangBom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.437-442
    • /
    • 2014
  • The equipment or with a constant torque and a variable stress due to axial vibration such as the turbine-generator system in nuclear power plant show the fatigue fracture behavior. Thus this study whoul aim to measure the torsional stress and analyze the fatigue fracture behavior. To achieve this, we manufactured the equipment similar with turbine-generator system and applied various torsional vibration stress due to external load. In particular, the evaluation was conducted with the existing evaluation methods of the fatigue behavior of known stress-life, strain-life, crack growth assessment methods. With increasing the external load and independent methods tends to decrease the fatigue life was confirmed up to 10 times in 5 kV external load compared to without external load.