• 제목/요약/키워드: fatigue crack propagation rate

검색결과 294건 처리시간 0.028초

압연강판(壓延鋼板)의 피로균열(被虜龜裂) 전파거동(傳播擧動)에 대(對)한 연구(硏究) (A Study on the Propagation Behaviour of the Fatigue Cracks in Rolled Steel Plates)

  • 강창수
    • 대한조선학회지
    • /
    • 제12권2호
    • /
    • pp.43-58
    • /
    • 1975
  • There are many reports on fatigue crack of metallic materials but most of them relate crack propagation rate to stress intensity factor. The problem of crack propagation is not yet clarified, especially the bridge between micro and macro phenomena In this experiment rotating bending fatigue tests have been carried out with smoothed specimen of rolled steel plates including 0.2% carbon under application of three stress conditions to investigate the slip band and the crack propagation behaviour. The results obtained are as follows; 1) The length of cracks which have grown at initial crack tips can be expressed as follows; $l=Ae^{BNr}$(A,B: constant, $N_r$: cycle ratio) $\frac{dl}{dN}=\frac{AB}{N_f}{\cdot}e^{BNr}$($N_f$:fatigue life) 2) The ratio of slipped grain number to total grain number is $S_f=7{\sigma}-5.6$-5.6{\sigma}_c$($\sigma$: stress amplitude) (${\sigma}_c$: fatigue limit) 3) When the fatigue process transfers from Stage I to Stage II, the crack which propagates into specimen changes its direction from that of the maximum shear stress to the direction of perpendicular to principal stress and this is same in the circumferential direction of specimen. the crack propagation behaviors of both sides of a crack are different each other when they approach to the grain boundary.

  • PDF

용접(鎔接)이음한 구조용강(構造用鋼)의 피노귀열진전거동(疲勞龜裂進展擧動) (The Propagation Behavior of the Fatigue Crack of the Welded Structural Steel)

  • 정영화;김익겸;이형근;정진석
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.117-124
    • /
    • 1998
  • In recently, according to increase the construction rate of steel bridge, it is necessary to develop the high strength, high toughness steel. Thus, this study show to evaluate the fatigue characteristic of SWS 570 B first used within a country. With the weld-joined compact tension specimens compared with each other, that is, transverse and lengthwise about the crack propagation, high and low in the input heat level, the fatigue test were performed. The log-log curves between the fatigue crack propagation rate da/dN and the transition range of the stress intensity factor ${\Delta}K$ ahead the crack tip were drawed, with these data. By using this curve, we obtained C and m which is material constant from Paris-Erdogan power law. The obtained results from this study indicate that fatigue crack growth rate of SWS 570 B is not influenced by softening effect which occurs in the HAZ(heat-affected zone) when high and low heat input weld is carried out. Softening effects, which affect fatigue properties, are shown that it is not affected to the fatigue growth rates significantly.

  • PDF

0.2% N을 첨가한 수퍼 2상 스테인리스강의 열처리 조건에 따른 특성 평가 - 제2보: 피로균열진전 거동 (Characteristic Evaluation according to Heat Treatment Conditions of Super Duplex Stainless Steel with Additive 0.2% N - Part 2: Fatigue Crack Propagation Behavior)

  • 안석환;강흥주;서현수;남기우;이건찬
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.79-84
    • /
    • 2009
  • Super duplex stainless steel has long life in severe environments by showing the enough strength and corrosion resistance. Therefore, the fracture mechanics approach needs to support the structural strength integrity for the used material. In this study, fatigue crack propagation behavior was investigated to super duplex stainless steel with 0.2% nitrogen. The various volume fraction and distribution of austenite structure for applied specimen in test were obtained by changing the heat treatment temperature and cycle. From test results, fatigue crack propagation rate showed two kinds of tendency between da/dN and ${\Delta}K$ according to distribution of austenite structure and structure anisotropy.

직류전위차법을 이용한 랜덤하중하의 피로균열 진전율에 대한 신뢰성 공학적 연구 (Reliability Engineering Approach to Fatigue Crack Growth Rate Under Random Loading Using DC Eletrical Potential Method)

  • 배성인
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.473-480
    • /
    • 1996
  • Automatic fatigue crack length measuring system using DC electrical potential method and the system control program for automatic fatigue testing under random load condition were made in this study. And using these system and control program, fatigue tests were executed under constant and random load condition. As the result, the propagation of crack in random loading can be represented Paris equaiton and log normal probability function. But constant and random load test show different crack propagation properties.

가공열처리한 Al-Zn-Mg 합금의 피로균열 성장거동에 미치는 하중비의 영향 (Effects of Load Ratio on Fatigue Crack Growth in a TMT Treated Al-Zn-Mg Alloy)

  • 변응선;김송희
    • 열처리공학회지
    • /
    • 제2권4호
    • /
    • pp.19-26
    • /
    • 1989
  • Fundmental fatigue crack propagation tests with C-T type specimens were conducted at various load ratios (R) such as 0.1, 0.3 and 0.5 in T6 and Thermomechanically treated (TMT) conditions of 7039 Al alloy. Better mechanical properties from monotonic test as well as fatigue crack propagation were obtained by TMT process owing to uniform distribution of fine microstructures and non-existence of precipitation free zone (PFZ). Through the measurement of Kop and ${\Delta}K$ at various R the concept of effective stress intensity factor range ratio, U was reviewed to asses the load ratio effect on fatigue crack propagation. A relationship between U and variables such as ${\Delta}K$ and R was obtained empirically. This may enable us to predict ${\Delta}K_{eff}$ that is of critical importance for prediction of fatigue crack propagation rate.

  • PDF

구멍 또는 이물질 사이를 통과하는 피로크랙 전파거동 (The Behavior of Fatigue Crack Propagation between the Holes or Another Materials)

  • 조재웅;김상철;이억섭
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.382-392
    • /
    • 1990
  • This study investigates the behavior of fatigue crack propagating between holes of holes filled with another materials. When holes of the holes filled with another materials are located symmetrically near a center crack, it is noted that the crack propagation rate is influenced by both the bonding force of the brazing part and the elastic modulus of another material. It is experimentally and analytically confirmed that the center crack stops when its tip reaches near the center line of the holes and a small crack is initiated from the boundaries of holes of the holes filled with another materials and it propagates to final fracture.

상.하수도 배관재 용접부의 하중에 따른 피로강도 평가 (Evaluation of Fatigue Strength of Weld According to Load of Piping materials for Water Supply and Drainage)

  • 박경동;유형주
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.224-225
    • /
    • 2005
  • The lightness of components required on marine and shipbuilding industry is requiring high strength of components. In particular, fatigue failure phenomena, which happen in metal, bring on danger in human life and property. Therefore, antifatigue failure technology takes an important part of current industries. In this study, it was investigated about endurance and fatigue crack propagation rate of according to stress ratio of SMAW commonly using for welding structures in present. Fatigue crack propagation rate(da/dN) of low load(R=0.1) was lower than of high load(R=0.6) for piping weld. And in stage I, ${\Delta}$Kth, the threshold stress intensity factor of the weld under heavy load is higher than under small load. Fatigue life shows more improvement in the weld of stress ratio R=0.l than in the weld of stress ratio R=0.6.

  • PDF

축대칭 압출금형의 피로수명예측에 관한 연구 (A Study on the Prediction of Fatigue Life in the Axi-symmetric Extrusion Die)

  • Ahn, S.H.;Kim, T.H.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제13권8호
    • /
    • pp.80-87
    • /
    • 1996
  • The present paper will give some results of the fatigue behavior of typical axi-symmetric forward extrusion die. The extrusion process is analyzed by rigid-plastic FEM and the deformation analysis of extrusion die is conducted by elasto-plastic FEM. To approach the crack problem LEFM (Linear Elastic Fracture Mechanics) is introduced. Using special element in order to conside the sigularity of stress/ strain in the vicinity of the crack tip, stress intensity factor and the effective stress intensity factor is calculated. Applying proper fatigue crack propagation criterion such as Paris/Erdogan fatigue law and maximum principal criterion to these data, then, the angle and the direction of fatigue crack propagation is simulated. In result, it is proved that the simulated fatigue crack propagates in the zigzag path along the radial direction and fatigue life of the extrusion die is evaluated by using the computed crack growth rate.

  • PDF

압흔가공위치에 따른 피로균열 전파거동 (The Behavior of Fatigue Crack Propagation by Position of Indentations)

  • 송삼홍;최진호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.28-32
    • /
    • 1995
  • This effective way for repairing a fatigue crack is making indetations around fatigue crack tip. In this paper, we performed fatigue test to investigate the optimal position of the indentations, and observed crack opening behavior at the same time. The indentation positions of specimens were on the crack tip, front and back of the crack tip. The results of the experiment showed taht it was veryeffective way to increase fatigue life that making indentations on the crack tip, and it was the optimal position that making indentations on the crack tip.

  • PDF

대형승용차 디스크 브레이크용 회주철의 피로균열 전파 거동 (Fatigue Crack Growth Behavior of Gray Cast Iron for Brake Disc of a Passenger Car)

  • 김호경;박진호;양경탁;최덕호
    • 한국안전학회지
    • /
    • 제21권4호
    • /
    • pp.19-24
    • /
    • 2006
  • Fatigue crack propagation tests for the brake disc cast iron were conducted for investigating fatigue crack propagation rate(da/dN), crack propagation path and fracture toughness($K_c$) of the material. The threshold stress intensity factor range, ${\Delta}K_{th}$, was found to be about $6MPa{\sqrt{m}}$ at the stress ratio of R = 0.1. Also, fracture toughness value was determined to be $24.7MPa{\sqrt{m}}$. Irregular fatigue fracture surfaces were observed, indicating that fatigue crack growth occurred at the interface between randomly scattered flak graphite and ferrite, where the interfacial strength was relatively weak.