• Title/Summary/Keyword: fat supplementation

Search Result 811, Processing Time 0.026 seconds

Effects of Conjugated Linoleic Acid Supplemention on Fat Accumulation and Degradation in Rats (흰쥐에서 식이지방에 첨가한 Conjugated Linoleic Acid가 지방 축적과 분해에 미치는 영향)

  • 강금지;박현서
    • Journal of Nutrition and Health
    • /
    • v.34 no.4
    • /
    • pp.367-374
    • /
    • 2001
  • Conjugated linoleic acid(CLA) is a naturally occuring group of derivatives of linoleic acid found in beef and dairy products. CLA has reported to reduce body fat. This study was designed to observe the effect of CLA supplementation on fat accumulation and degradation in male Sprague Dawley rats. Seventy two rats, weighing 150-180g, were divided into 2 groups according to the types of dietary fat(beef tallow or fish oil) and then each group was divided into 2 groups depending on CLA supplementation, i.e., BT, BT-CLA, FO, FO-CLA. All rats were fed experimental diet containing total fat at 12%(w/w) including CLA at 1% for 30 weeks. At 30 weeks, rats were sacrificed to measure TG, free fatty acid level in plasma, TG, lipogenic enzymes in lever and fat cell size, LPL and HSL activities in epididymal fat fad. Fish oil supplemented with CLA diet showed significant reduction in the food efficiency and weight in 30 weeks-fed rats. CLA supplement did not effect on plasma TG, hepatic TG levels and lipogenic enzymes activities in rats, but, fish oil significantly reduced, The LPL and HSL activities did not affected by CLA supplement and n-3 fatty acid rich fish oil. In conclusion, the results suggest that CLA supplement was not a proper way to reduce the fat accumulation in Sprague Dawley rats. Fish oil supplemented with CLA might better way to reduce the body fatness than fish oil itself. Therefore, It is recommended that further study be performed related to physiological and biochemical effects of CLA supplementation and n-3 fatty acid in rats for the reduction of body fatness.(Korean J Nutrition 34(4) : 367∼374, 2001)

  • PDF

Effects of d-${\alpha}$-tocopherol supplements on lipid metabolism in a high-fat diet-fed animal model

  • Kim, Do Yeon;Kim, Jinkyung;Ham, Hye Jin;Choue, Ryowon
    • Nutrition Research and Practice
    • /
    • v.7 no.6
    • /
    • pp.481-487
    • /
    • 2013
  • High-fat diet up-regulates either insulin resistance or triglycerides, which is assumed to be related to the expression of peroxisome proliferator-activated receptor (PPAR)-${\alpha}$ and PPAR-${\gamma}$. The beneficial effects of vitamin E on insulin resistance are well known; however, it is not clear if vitamin E with a high-fat diet alters the expression of PPAR-${\alpha}$ and PPAR-${\gamma}$. We investigated the effects of d-${\alpha}$-tocopherol supplementation on insulin sensitivity, blood lipid profiles, lipid peroxidation, and the expression of PPAR-${\alpha}$ and PPAR-${\gamma}$ in a high-fat (HF) diet-fed male C57BL/6J model of insulin resistance. The animals were given a regular diet (CON; 10% fat), a HF diet containing 45% fat, or a HF diet plus d-${\alpha}$-tocopherol (HF-E) for a period of 20 weeks. The results showed that the HF diet induced insulin resistance and altered the lipid profile, specifically the triglyceride (TG) and total cholesterol (TC) levels (P < 0.05). In this animal model, supplementation with d-${\alpha}$-tocopherol improved insulin resistance as well as the serum levels of TG and very-low-density lipoprotein-cholesterol (VLDL-C) (P < 0.05). Moreover, the treatment decreased the levels of malondialdehyde (MDA) in the serum and liver while increasing hepatic PPAR-${\alpha}$ expression and decreasing PPAR-${\gamma}$ expression. In conclusion, the oral administration of d-${\alpha}$-tocopherol with a high-fat diet had positive effects on insulin resistance, lipid profiles, and oxidative stress through the expression of PPAR-${\alpha}$ and PPAR-${\gamma}$ in a high-fat diet-fed male mice.

Effect of Dietary Grape Pomace on Lipid Oxidation and Related Enzyme Activities in Rats Fed High Fat Diet (포도박이 고지방식이를 섭취한 흰쥐의 지질 산화와 항산화 효소 활성에 미치는 영향)

  • Zhang, Xian-Hua;Choi, Soo-Kyong;Seo, Jung-Sook
    • Journal of Nutrition and Health
    • /
    • v.42 no.5
    • /
    • pp.415-422
    • /
    • 2009
  • The present study was conducted to investigate the effect of dietary supplementation of grape pomace on lipid peroxidation and related enzyme activities of rats fed high fat diet. Male Sprague-Dawley rats weighing about 90 g were assigned to 4 experimental groups of 8 rats on the basis of their body weight. The high fat diet contained additional 15% lard to AIN 93-based diet. Rats were fed experimental diets containing 5% grape pomace for 4 weeks. Dietary supplementation of grape pomace reduced serum concentration of lipid peroxide in rats fed high fat diet. Hepatic concentration of lipid peroxide tended to be lower by feeding grape pomace. Hepatic total glutathione content and GSH/GSSG ratio were increased by grape pomace feeding in normal or high fat diet groups. Hepatic superoxide dismutase activity of grape pomace group with high fat diet was induced significantly compared with high fat diet group without grape pomace. Hepatic catalase activity of high fat fed rats was induced by feeding grape pomace. Grape pomace diet increased glutathione-S-transferase and glutathione peroxidase activities in rat liver fed high fat. Hepatic glucose-6-phosphatase activity was not affected by dietary supplementation of grape pomace in rats fed high fat. These results suggest that dietary supplementation of grape pomace may alleviate lipid peroxidation through antioxidant effect in rats fed high fat.

Dose-Dependent Impacts of Omega-3 Fatty Acids Supplementation on Anthropometric Variables in Patients With Cancer: Results From a Systematic Review and Meta-Analysis of Randomized Clinical Trials

  • Seyed Mojtaba Ghoreishy;Sheida Zeraattalab-Motlagh;Reza Amiri Khosroshahi;Amirhossein Hemmati;Morvarid Noormohammadi;Hamed Mohammadi
    • Clinical Nutrition Research
    • /
    • v.13 no.3
    • /
    • pp.186-200
    • /
    • 2024
  • Meta-analyses have been conducted with conflicting results on this topic. Due to missing several eligible studies in previous meta-analysis by Lam et al., we conducted an extensive systematic review and dose-response meta-analysis of randomized controlled trials in this regard. A comprehensive search was conducted across various databases, including MEDLINE/PubMed, ISI Web of Knowledge, Scopus, and Google Scholar, until November 2023. Based on the analysis of 33 studies comprising 2,047 individuals, it was found that there was a significant increase in body weight for each 1 g/day increase in omega-3 lipids (standardized MD [SMD], 0.52 kg; 95% confidence interval [CI], 0.31, 0.73; I2 = 95%; Grading of Recommendations Assessment, Development and Evaluation [GRADE] = low). Supplementation of omega-3 fatty acids did not yield a statistically significant impact on body mass index (BMI) (SMD, 0.12 kg/m2; 95% CI, -0.02, 0.27; I2 = 79%; GRADE = very low), lean body mass (LBM) (SMD, -0.02 kg; 95% CI, -0.43, 0.39; I2 = 97%; GRADE = very low), fat mass (SMD, 0.45 kg; 95% CI, -0.25, 1.15; I2 = 96%; GRADE = low), and body fat (SMD, 0.30%; 95% CI, -0.90, 1.51; I2 = 96%; GRADE = very low). After excluding 2 studies, the findings were significant for BMI. Regarding the results of the dose-response analysis, body weight increased proportionally by increasing the dose of omega-3 supplementation up to 4 g/day. Omega-3 fatty acid supplementation can improve body weight, but not BMI, LBM, fat mass, or body fat in cancer patients; large-scale randomized trials needed for more reliable results.

Effects of prilled fat supplementation in diets with varying protein levels on production performance of early lactating Nili Ravi Buffaloes

  • Saba Anwar;Anjum Khalique;Hifzulrahman;Muhammad NaeemTahir;Burhan E Azam;Muhammad Asim Tausif;Sundas Qamar;Hina Tahir;Murtaza Ali Tipu;Muhammad Naveed ul Haque
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1387-1397
    • /
    • 2024
  • Objective: The objective of the current study was to find out the independent and interactive effects of prilled fat supplementation with protein on the production performance of early lactating Nili Ravi buffaloes. Methods: Sixteen early lactating buffaloes (36.75±5.79 d in milk; mean±standard error) received 4 treatments in 4×4 Latin-square design according to 2×2 factorial arrangements. The dietary treatments were: i) low protein low fat, ii) low protein high fat, iii) high protein low fat, and iv) high protein high fat. The dietary treatments contained 2 protein (8.7% and 11.7% crude protein) and fat levels (2.6% and 4.6% ether extract) on a dry matter basis. Results: The yields of milk and fat increased with increasing protein and fat independently (p≤0.05). Energy-, protein-, and fat-corrected milk yields also increased with increasing protein and fat independently (p≤0.05). Increasing dietary protein increased the protein yield by 3.75% and lactose yield by 3.15% and increasing dietary fat supplies increased the fat contents by 3.93% (p≤0.05). Milk yield and fat-corrected milk to dry matter intake ratios were increased at high protein and high fat levels (p≤0.05). Milk nitrogen efficiency was unaffected by dietary fat (p>0.10), whereas it decreased with increasing protein supplies (p≤0.05). Plasma urea nitrogen and cholesterol were increased by increasing protein and fat levels, respectively (p≤0.05). The values of predicted methane production reduced with increasing dietary protein and fat. Conclusion: It is concluded that prilled fat and protein supplies increased milk and fat yield along with increased ratios of milk yield and fat-corrected milk yields to dry matter intake. However, no interaction was observed between prilled fat and protein supplementation for production parameters, body weight, body condition score and blood metabolites. Predicted methane production decreased with increasing protein and fat levels.

Effect of Grass Silage Supplementation on Performance in Lactating Cows Grazing on Pasture

  • Sung, K.I.;Okubo, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1409-1418
    • /
    • 2001
  • Two trials were carried out during two different grazing seasons to evaluate effect of grass silage supplementation, when amount of pasture is limited on dry matter intake (DMI), milk production, and gross energetic efficiency (GEE) of grazed lactating cows on a high forage-based diet. Fifty-one Holstein cows were randomly assigned to one of two dietary treatments: high pasture group or high silage group. In the spring flush, pasture and silage DMI, milk yield, milk fat percentage, and GEE were not different between the dietary groups. After the spring flush, pasture and silage DMI were higher for the high silage group than for the high pasture group. After the spring flush, although these were the higher total DMI of the high silage group than the high pasture group, milk yield was significantly (p<0.05) higher for the high pasture group than the high silage group. Milk fat percentage tended to be higher for the high silage group than the high pasture group. The GEE was significantly (p<0.05) higher for the high pasture group than the high silage group during after the spring flush. This study indicated that supplementation of grass silage, especially after the spring flush, can have a significant effect of increasing of forage intake and maintenance of the milk fat percentage; but not increase milk yield and GEE.

Effects of Soybean Oil or Rumen Protected Conjugated Linoleic Acid Supplementation on Accumulation of Conjugated Linoleic Acid in Dairy Cows' Milk

  • Suksombat, Wisitiporn;Chullanandana, Khukbuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.9
    • /
    • pp.1271-1277
    • /
    • 2008
  • The effects of feeding soybean oil (SBO) or rumen protected conjugated linoleic acid (RP-CLA) on CLA accumulation in milk, and performance of lactating dairy cows were studied. Twenty four Holstein Friesian crossbred lactating dairy cows, averaging $126{\pm}45days$ in milk, $15.6{\pm}2.43kg$ of milk and $452{\pm}51kg$ body weight were stratified randomly and assigned in a randomized complete block design (RCBD) to three treatments of 8 cows each. The treatments were control, 150 g of SBO and 150 g of RP-CLA supplementation. Performance parameters showed that DM intake, NELP intake and body weight change were similar across treatments, while CP intake was decreased by SBO and RP-CLA supplementation. Milk yield and milk composition were not significantly different among treatments, except for milk fat percentage and fat yield which were significantly decreased by 27% (p<0.05) and by 28% (p<0.01), respectively, by RP-CLA supplements compared with control treatment. Feeding RP-CLA reduced 3.5% FCM compared with the other treatments (p<0.003). Both SBO and RP-CLA supplementation reduced ${\geq}C18:0$ and CLA concentration in milk fat.

Effects of Dandelion (Taraxzcum coreanum) Supplementation on Milk Yield, Milk Compositions and Blood Characteristics in Lactating Dairy Cows

  • Cho, Jung Youl;Kim, Eun Joong;Lee, Sang Moo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.3
    • /
    • pp.217-224
    • /
    • 2015
  • This study aimed to investigate the effects of Dandelion (Taraxzcum coreanum) supplementation on milk yield, milk composition and blood characteristics in lactating dairy cows. Eight lactating dairy cows were divided into two groups (control: TMR supplementation, treatment: TMR with Dandelion supplementation). The milk yield, milk fat, lactose, solids not fat (SNF) and somatic cells counts (SCC) were not significantly different between the control group and the treatment group, whereas milk protein, milk urea nitrogen (MUN) and free fat acid (FFA) were significantly higher in the treatment group compared to the control (p<0.05). The blood components of the treatment group were compared with those of the control group and only aspartate aminotransferase (AST) appeared significantly high (p<0.05). The other blood components were not significantly different in the two groups. Blood corpuscle components in the groups were not significantly different. Especially, all blood corpuscle components in the treatment group were within the normal range. However, the white blood cells (WBC), lymphocytes (LYM) and hematocrits (HCT) in the control group exceeded the normal range. Based on the above results, the addition of Dandelion to feed increased milk protein, MUN and FFA, but did not significantly affect the composition of the blood and corpuscle in Holstein milking cows.

산란계 사료내 Cu-Methionine chelate 첨가가 생산성과 난황 cholesterol에 미치는 영향

  • 임희석;백인기
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2001.11a
    • /
    • pp.64-65
    • /
    • 2001
  • Seven hundred twenty 56 wks old ISA brown layers were assigned to five dietary treatments for 12 weeks. Each treatment was consisted of 6 replications with 24 birds. Control diet was formulated to have 15% CP, 2800kcal/kg ME, 3.8% Ca and Cu-methionine chelate(Cu-Met) were added to control diet at the level of 25, 50, 75, 100ppm in Cu. Supplementation of 25, 75, 100ppm Cu in from of Cu-Met s increased egg productions by 2.11, 3.84, 3.66%, compare with control. Egg weight also increased by supplementation of Cu at 50, 75, 100ppm in Cu-Met. Gizzard erosion tened to increase by supplementary Cu-Met but were not significantly different. Supplementation of Cu at the level of 75, 100ppm Cu-Met treatments decreased crude fat level in liver. It concludes that supplementation of Cu at level in the form of 75 or 100ppm methionine chelate improves egg production with heavier egg weight and decreases crude fat content in the liver.

  • PDF

Onion Supplementation Inhibits Lipid Peroxidation and Leukocyte DNA Damage due to Oxidative Stress in High Fat-cholesterol Fed Male Rats

  • Park, Jae-Hee;Seo, Bo-Young;Lee, Kyung-Hea;Park, Eun-Ju
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.179-184
    • /
    • 2009
  • The aim of this study was to investigate effects of onion, red onion, or quercetin on plasma antioxidant vitamin, lipid peroxidation, and leukocyte DNA damage in rats fed a high fat-cholesterol diet. Forty SD male rats were assigned to normal control, high fat-cholesterol diet (HF), or HF+5% onion powder, HF+5% red onion powder, or HF+0.0l% quercetin. The HF diet resulted in significantly higher plasma lipid peroxidation which decreased with onion, red onion, or quercetin supplementation. Leukocyte DNA damage induced by HF diet decreased significantly in rats fed onion and red onion, while quercetin supplementation had no effect on preventing leukocyte DNA damage. $H_2O_2$ induced leukocyte DNA damage exhibited a highly significant negative correlation with plasma retinol and tocopherols. These results suggest that onion or red onion powder exerts a protective effect with regard to DNA damage in rats fed HF diet. However, 0.01% quercetin in pure form might not be effective at preventing DNA damage.