• 제목/요약/키워드: faster R-CNN

검색결과 90건 처리시간 0.026초

Caltech 보행자 감지를 위한 Scale-aware Faster R-CNN (Scale-aware Faster R-CNN for Caltech Pedestrian Detection)

  • 바트후;주마벡;조근식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.506-509
    • /
    • 2016
  • We present real-time pedestrian detection that exploit accuracy of Faster R-CNN network. Faster R-CNN has shown to success at PASCAL VOC multi-object detection tasks, and their ability to operate on raw pixel input without the need to design special features is very engaging. Therefore, in this work we apply and adjust Faster R-CNN to single object detection, which is pedestrian detection. The drawback of Faster R-CNN is its failure when object size is small. Previously, small sized object problem was solved by Scale-aware Network. We incorporate Scale-aware Network to Faster R-CNN. This made our method Scale-aware Faster R-CNN (DF R-CNN) that is both fast and very accurate. We separated Faster R-CNN networks into two sub-network, that is one for large-size objects and another one for small-size objects. The resulting approach achieves a 28.3% average miss rate on the Caltech Pedestrian detection benchmark, which is competitive with the other best reported results.

중기 염색체 객체 검출을 위한 Faster R-CNN 모델의 최적화기 성능 비교 (Performance Comparison of the Optimizers in a Faster R-CNN Model for Object Detection of Metaphase Chromosomes)

  • 정원석;이병수;서정욱
    • 한국정보통신학회논문지
    • /
    • 제23권11호
    • /
    • pp.1357-1363
    • /
    • 2019
  • 본 논문은 사람의 중기 염색체로 이루어진 디지털 이미지에서 Faster Region-based Convolutional Neural Network(R-CNN) 모델로 염색체 객체를 검출할 때 필요한 경사 하강 최적화기의 성능을 비교한다. Faster R-CNN의 경사 하강 최적화기는 Region Proposal Network(RPN) 모듈과 분류 점수 및 바운딩 박스 예측 블록의 목적 함수를 최소화하기 위해 사용된다. 실험에서는 이러한 네 가지 경사 하강 최적화기의 성능을 비교하였으며 VGG16이 기본 네트워크인 Faster R-CNN 모델은 Adamax 최적화기가 약 52%의 Mean Average Precision(mAP)를 달성하였고 ResNet50이 기본 네트워크인 Faster R-CNN 모델은 Adadelta 최적화기가 약 58%의 mAP를 달성하였다.

X-ray 이물검출기의 이물 검출 향상을 위한 딥러닝 방법 (Deep Learning Method for Improving Contamination Dectection of Xoray Inspection System)

  • 임병휘;정승수;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.460-462
    • /
    • 2021
  • 식품은 기본적으로 영양성과 안전성을 반드시 갖추어야 한다. 최근에 식품의 안정성이 의심이 되는 안산의 한 유치원에서 식중독성 유증상자가 다수 발생하였다. 그래서 식품의 안전성은 더욱 요구되는 사항이다. 본 논문에서는 식품의 안전성을 확보하기 위한 이물검출기의 딥러닝모델을 통해 검출율을 향상시키는 방법을 제안한다. 제안방법으로는 CNN(convolution neural network), Faster R-CNN(region convolution neural network)의 네트워크를 통해 학습하고 정상과 이물제품의 영상을 테스트 한다. 딥러닝 모델을 통해 테스트한 결과 기존 이물검출기의 알고리즘에 Faster R-CNN을 병행한 방법이 다른 방법보다 검출율이 좋은 성능을 보였다.

  • PDF

Faster R-CNN 기반의 실시간 번호판 검출 (Real-Time License Plate Detection Based on Faster R-CNN)

  • 이동석;윤숙;이재환;박동선
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.511-520
    • /
    • 2016
  • 자동차 번호판 검출 자동화(ALPD: Automatic License Plate Detection) 시스템은 효율적인 교통 관제를 위한 핵심 기술이며, 통행료 지불 시스템, 주차장 및 교통 관리와 같은 많은 응용에 사용되어 업무의 효율을 높이고 있다. 최근까지의 ALPD에 관한 연구에서는 주로 영상처리를 위해 설계된 기존의 특징들을 추출하여 번호판 검출에 사용해왔다. 이러한 종래의 방법은 속도에 이점은 있으나, 다양한 환경 변화에 따른 성능 저하를 보였다. 본 논문에서는 전반적인 성능을 향상시키기 위하여 Faster R-CNN과 CNN으로 구성되는 두 단 구조를 활용하는 방법을 제안한다. 이를 통해 동작 속도를 향상시키고, 다양한 환경변화에 강인하도록 구성하였다. 첫 번째 단계에서는 Faster R-CNN을 적용하여 번호판 영역 후보영역들을 선별하며, 두 번째 단에서 CNN을 활용하여 후보영역들 중에서 False Positives를 제거함으로써 검출률을 향상시켰다. 이를 통해 ZFNet을 기반으로 하여 99.94%의 검출률을 달성하였다. 또한 평균 운용시간은 80ms/image로써 빠르고 강인한 실시간 번호판 검출 시스템을 구현할 수 있었다.

배터리 리드탭 압흔 오류 검출의 딥러닝 기법 적용 (Application of deep learning technique for battery lead tab welding error detection)

  • 김윤호;김병만
    • 한국산업정보학회논문지
    • /
    • 제27권2호
    • /
    • pp.71-82
    • /
    • 2022
  • 자동차용 배터리 제조공정 가운데 하나인 Tab Welding 공정에서 생산된 제품의 샘플링 인장검사를 대체하기 위해 현재 비전검사기를 개발하여 사용하고 있다. 그러나, 비전검사는 검사 위치 오차 문제와 이를 개선하기 위해 발생하는 비용 문제를 가지고 있다. 이러한 문제점들을 해결하기 위해 최근 딥러닝 기술을 적용하는 사례들이 발생하고 있다. 본 논문도 그런 사례 중 하나로 기존 제품 검사에 딥러닝 기술 중 하나인 Faster R-CNN을 적용하여 그 유용성을 파악하고자 하였다. 기존 비전검사기를 통해 획득한 이미지들을 학습 데이터로 사용하여 Faster R-CNN ResNet101 V1 1024x1024 모델을 사용하여 학습하였다. 검사 기준인 미검률 0%, 과검률 10%의 기준으로 기존 비전검사와 Faster R-CNN 검사결과를 비교 분석하였다. 미검출률은 기존 비전검사에서 34.5%, Faster R-CNN 검사에서 0%였다. 과검출률은 기존 비전검사에서 100%, Faster R-CNN에서 6.9%였다. 결론적으로 자동차용 배터리 리드탭 암흔 오류 검출에 딥러닝 기술이 매우 유용함을 확인할 수 있었다.

금속 표면의 결함 검출을 위한 영역 기반 CNN 기법 비교 (Comparison of Region-based CNN Methods for Defects Detection on Metal Surface)

  • 이민기;서기성
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.865-870
    • /
    • 2018
  • A machine vision based industrial inspection includes defects detection and classification. Fast inspection is a fundamental problem for many applications of real-time vision systems. It requires little computation time and localizing defects robustly with high accuracy. Deep learning technique have been known not to be suitable for real-time applications. Recently a couple of fast region-based CNN algorithms for object detection are introduced, such as Faster R-CNN, and YOLOv2. We apply these methods for an industrial inspection problem. Three CNN based detection algorithms, VOV based CNN, Faster R-CNN, and YOLOv2, are experimented for defect detection on metal surface. The results for inspection time and various performance indices are compared and analysed.

트랜슬레이션 임베딩 기반 관계 학습을 이용한 GUI 위젯 인식 (Recognition of GUI Widgets Utilizing Translational Embeddings based on Relational Learning)

  • 박민수;석호식
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.693-699
    • /
    • 2018
  • CNN 기반의 객체 인식 성능은 매우 우수한 것으로 보고되고 있지만 모바일 기기의 앱 GUI와 같이 일반적으로 생각하기에 잡음이 적고 분명하게 인식될 수 있을 것으로 기대되는 환경에 적용해보면 인간의 관점에서 매우 유사한 GUI 입력 위젯들이 의외로 잘 인식되지는 않는다는 문제가 발생한다. 본 논문에서는 CNN의 입력 위젯 인식 성능을 향상시키기 위하여 모바일 앱의 GUI를 구성하는 객체들의 관계를 활용하는 방법을 제안한다. 제안 방법에서는 (1) CNN 기반의 객체 인식 도구인 Faster R-CNN을 이용하여 모바일 앱을 구성하는 입력 위젯을 1차 인식한 후 (2) 위젯 인식률 향상을 위하여 객체 간의 관계를 활용하는 방법을 결합하였다. 객체 간의 관계는 표현 공간상에서의 벡터의 평행 이동을 활용하여 표현되었으며, 총 323개의 앱에서 생성한 데이터에 적용한 결과 Faster R-CNN만을 사용한 경우와 비교하여 위젯 인식률을 상당히 개선할 수 있음을 확인하였다.

초고속 R-CNN을 이용한 얼굴영상에서 눈 및 입술영역 검출방법 (A Method of Eye and Lip Region Detection using Faster R-CNN in Face Image)

  • 이정환
    • 한국융합학회논문지
    • /
    • 제9권8호
    • /
    • pp.1-8
    • /
    • 2018
  • 얼굴인식, 홍채인식과 같은 생체보안 분야에서 눈, 코, 입술 등 얼굴특징을 추출하는 과정은 필수적이다. 본 논문은 초고속(faster) R-CNN을 이용하여 얼굴영상에서 눈 및 입술영역을 검출하는 방법을 연구하였다. 초고속 R-CNN은 딥러닝을 이용한 물체검출 방법으로 기존의 특징기반 방법에 비해 성능이 우수한 것으로 알려져 있다. 본 논문에서는 얼굴영상에 콘볼루션, 선형정류과정, max pooling과정을 차례로 적용하여 특징맵을 추출하고 이로부터 제안영역(region proposal)을 검출하는 RPN(region proposal network)을 학습한다. 그리고 제안영역과 특징맵을 이용하여 눈 및 입술 검출기(detector)를 학습한다. 제안방법의 성능을 검토하기 위해 남녀한국인 얼굴영상 800장으로 실험하였다. 학습을 위해 480장을 이용했으며 테스트용으로 320장을 사용하였다. 컴퓨터모의 실험결과 눈 및 입술영역 검출의 평균정확도는 50 에포치일 때 각각 97.7%, 91.0%를 얻을 수 있었다.

Faster R-CNN 기반의 관심영역 유사도를 이용한 후방 접근차량 검출 연구 (Rear-Approaching Vehicle Detection Research using Region of Interesting based on Faster R-CNN)

  • 이영학;김중수;심재창
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.235-241
    • /
    • 2019
  • 본 논문에서는 농업 기계 시스템에서 사용하기 위한 딥러닝 알고리즘 기반의 프레임 내의 관심 영역 유사성을 이용한 새로운 후방 접근 차량 검출 알고리즘을 제안한다. 농업 기계 시스템은 후방에서 접근하는 차량만 검출해야 한다. 지나가는 자동차가 검출되면 혼란을 야기할 수 있다. 논문에서는 차량 검출을 위해 딥러닝에서 뛰어난 검출률을 나타내는 Faster R-CNN 모델을 사용하였다. 딥러닝은 뒤에서 접근하는 차량뿐만 아니라 지나가는 차량도 검출하므로 긍정오류 차량을 배제해야 한다. 본 논문에서 이를 해결하기 위해 검출된 프레임에서 관심 영역에 대한 유사성과 평균 에러를 피라미드 형태로 이용하여 접근하는 자동차만 검출하는 알고리즘을 제안하였다. 실험을 통하여 제안된 방법이 평균 98.8%의 높은 검출률을 나타내었다.

Faster R-CNN을 활용한 GPR 영상에서의 지하배관 위치추적 성능분석 (Performance Analysis of Detecting buried pipelines in GPR images using Faster R-CNN)

  • 고형용;김남기
    • 융합정보논문지
    • /
    • 제9권5호
    • /
    • pp.21-26
    • /
    • 2019
  • 도심지에는 상 하수관로, 가스관, 수소관 등 필요에 따라 여러 가지 배관이 매설된다. 매설된 배관은 시간이 경과됨에 따라 균열 등으로 노후화되면서 폭발, 누수 등의 사고 발생 위험을 가지게 된다. 이러한 위험을 방지하기 위해 많은 노후 배관 수리, 교체되지만, 배관의 위치 또한 변경될 수 있다. 변경된 배관의 위치를 확인하지 못하면 배관을 건드려서 사고가 발생할 수 있다. 본 논문에서는 GPR을 사용하여 지하 단면 영상을 얻고, Faster R-CNN을 활용하여 지하 배관의 위치를 추정해보고, augmentation을 적용하여 부족한 데이터를 늘려서 실험을 진행하였다.