• Title/Summary/Keyword: fastening torque

Search Result 29, Processing Time 0.031 seconds

Fastening Torque Control Mechanism for Automatic Screw Driver (자동 나사 체결기의 체결력 제어 방법)

  • 오의진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.561-566
    • /
    • 2000
  • A screw driver is essentially used in assembling machine parts and electronic products such as the printed circuit board with a housing. As the parts to be assembled becomes small and precise, the higher precision of the controling screw driver torque is required. However, because the operator controls the fastening torque by his experience, it must be inexact. Thus the screw driver which can exactly control the fastening torque by a bellows is designed and developed in the study. The bellows is expanded by the inner air pressure and contracted and by the spring operation. The bellows driver is composed of the entrance solenoid valve, the exit solenoid valve and the pressure sensor. The pressure sensor senses the bellows pressure. When the pressure sensor output reaches the setting value, it operates the exit solenoid valve not to deliver further torque by letting the air of the bellows out. Through a series of experiments, the performance is studied and verified.

  • PDF

Precision Screw Driver utilizing a Bellows (벨로우즈방식의 정 밀 나사 체결기)

  • 정규원;오의진
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.53-59
    • /
    • 2001
  • A screw driver is widely used in assembling machine parts or electronic products such as the printed circuit board with a housing. As the parts to be assembled becomes small and precise, the higher precision of the controlling screw driver torque is required. However, because the operator controls the fastening torque based on experience, it must be inexact and the setting procedure will be time consuming job. Thus the screw driver which can exactly control the fastening torque is developed utilizing a bellows in this paper. The bellows is expanded by the inner air pressure and contracted by the spring operation. The bellows type driver is composed of a clutch mechanism with two solenoid valves and a pressure sensor. Those valves are controlled using the detected bellows pressure by the sensor. When the pressure reaches the setting value, the exit solenoid valve is opened to release the air pressure from the bellows so as not to deliver further torque. Through a series of experiments, the performance is examined and verified.

  • PDF

A Study on the Pulling Force Characteristic of the Reverse Screw for the Metal Fastening Method (Metal Fastening 공법을 위한 Reverse Screw의 견인력 특성에 관한 연구)

  • Kim, Tae-Hyung;Lee, Seong-Wook;Han, Geun-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • The metal fastening method is the new technology to repair cracks in the casting material using specially designed reverse screws. In this study, we conduct the finite element analysis to analyze the pulling force characteristic of a reverse screw, the core component of the metal fastening method, with respect to the change of the applying torque, frictional coefficient and front screw angle. The simplified analysis model with single screw pitch is proposed for convergency of the non-linear contact analysis. As a results, the pulling force of a reverse screw increase in proportion to the applying torque but exponentially decrease according to frictional coefficient. And also we can find the optimum front screw angle with the largest pulling force is $20^{\circ}$.

Estimation of Contact Stress Distribution Factor in Bolt Joint with variable Fastening torque (체결력에 따른 볼트 결합부의 접촉응력분포계수 평가)

  • 김종규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.73-79
    • /
    • 1999
  • Most of mechanical structures are combined of substructures such as beams and/or plates. There are few systems with unibody structures but are many systems with united body structures. Generally the dynamic a nalysis of whole structures is performed under alternation load. In the structure design, the analysis of each bolted joint is more important than others for zero severity. This paper presents the analysis method of contact stress distribution factor in the bolted joint with variable fastening torque on joints in the structure. At first, a static vibration test was performed to find out a nominal stress of bolt jointed plates from the relationship between natural frequency and nominal stress. Then a contact stress was computed at contact point between bolt and plate in the structure. It is believed that the proposed method has promisiong implications for safer design with index of contact stress distribution factor and has merits for cost-down and saving time at the beginning of vehicle development.

  • PDF

Experimental Study on the Dynamic Characteristics of a Missile Structure Depending on Fastening Method (체결 방식에 따른 유도탄의 동적 특성에 관한 실험적 연구)

  • Jeon, Ho-Chan;Song, Ohseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.452-459
    • /
    • 2019
  • In order to design and manufacture structures such as a guided missile, assembly process with fastener is an essential method of fabrication. In this study, the dynamic characteristics of a cylindrical structure with bolted joints were studied using experimental methods. The change of the natural frequency of the structure with the change of the fastening method and the tightening torque were measured by the test and the finite element analysis was performed using the stiffness model of the fastening part according to the fastening method and compared with the test results.

Development of High Precision Fastening torque performance Nut-runner System (고정밀 체결토크 성능 너트런너 시스템 개발)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.35-42
    • /
    • 2019
  • Nut fasteners that require ultra-precise control are required in the overall manufacturing industry including electronic products that are currently developing with the automobile industry. Important performance factors when tightening nuts include loosening due to insufficient fastening force, breakage due to excessive fastening, Tightening torque and angle are required to maintain and improve the assembling quality and ensure the life of the product. Nut fasteners, which are now marketed under the name Nut Runner, require high torque and precision torque control, precision angle control, and high speed operation for increased production, and are required for sophisticated torque control dedicated to high output BLDC motors and nut fasteners. It is demanded to develop a high-precision torque control driver and a high-speed, low-speed, high-response precision speed control system, but it does not satisfy the high precision, high torque and high speed operation characteristics required by customers. Therefore, in this paper, we propose a control technique of BLDC motor variable speed control and nut runner based on vector control and torque control based on coordinate transformation of d axis and q axis that can realize low vibration and low noise even at accurate tightening torque and high speed rotation. The performance results were analyzed to confirm that the proposed control satisfies the nut runner performance. In addition, it is confirmed that the pattern is programmed by One-Stage operation clamping method and it is tightened to the target torque exactly after 10,000 [rpm] high speed operation. The problem of tightening torque detection by torque ripple is also solved by using disturbance observer Respectively.

Investigation of Fastening Performance of Subminiature Serrated Bolt (초소형 쎄레이션 볼트의 체결성능 분석)

  • Jang, Myung Guen;Jeong, Jin Hwan;Jang, Yeon Hui;Kim, Hee Cheol;Kim, Jong-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.257-262
    • /
    • 2017
  • As the size of electric products such as mobile phones and smart watches decrease, the bolts used to assemble these products should also be miniaturized. A miniature-sized bolt has to provide sufficient joining torque and anti-releasing torque to keep the components together. We studied a serrated bolt as a candidate for a miniature-sized fastener to increase the anti-releasing torque. In a serrated bolt, a serrated shape is formed on the bottom surface of the bolt head to create an obstacle to releasing. In this study, finite element analyses for the joining and releasing of bolts were carried out, and the anti-releasing performance was predicted. Based on the results of analyses using various numbers of serrations and fastening depths, the effects of the number of serrations and fastening depth on the anti-releasing performance were investigated.

A Study on the Steering Wheel Vibration affected by the Fastening Torque of the Wheel Mounting Hub Bolts of Steel Wheels (스틸휠의 체결력에 따른 조향휠 진동에 관한 연구)

  • 안세진;정의봉;유완석;김명규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.189-195
    • /
    • 2003
  • The steel wheels are widely used in the passenger cars because of their low cost of production although the aluminum wheels have many advantages in their performance and appearance. It is known that the steering wheel vibration with steel wheels is generated more often than one with aluminum wheels. Both the constant velocity driving test and the m up test are carried out in this study to analyze the causes and path of the steering wheel vibration generated from the steel wheels. And this study shows that the steering wheel vibration is affected by the fastening torque of the wheel mounting bolts between the steel wheel and the suspension disk.

A two-phase servo motor control circuit for the nut-runners employing the tightening torque control method (자동나사체걸기의 토크제어를 위한 AC 2상서보모터 제어회로 설계)

  • 김기엽;김일환;박찬웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.312-316
    • /
    • 1987
  • A simple hybrid circuit to control the two-phase AC motor of the nut-runners which employ the tightening torque control system is described in this paper. The circuit has emphasis on the low-cost implementation. The circuit constitutes of the V/F converter using a timer IC, the pulse width modulator using the fastening torque signal and the two-phase logic sequencer.

  • PDF

Development of multi-functioned remote impact wrench (다기능 원격 임팩트 렌치 개발)

  • 윤지섭;이재설;박현수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.298-301
    • /
    • 1990
  • This paper presents technologies to improve the control of an impact wrench. Impact wrench is a tool which is held by the electro-mechanical manipulator and used to fasten and loosen the bolts for remote maintenance of equipment in hostile environment. Vision system was developed to measure the distance and improve the positioning of the impact wrench. The vision system used two laser beams with a CCTV camera. Also, a torque adjusting method was developed to limit the fastening torque.

  • PDF