• Title/Summary/Keyword: fastener

Search Result 195, Processing Time 0.027 seconds

The criteria for the change ratio of track stiffness along transition area (접속구간 궤도강성변화 기준에 관한 연구)

  • Yang, Sin-Chu;Moon, Jae-Woo;Yu, Jin-Young
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.351-357
    • /
    • 2007
  • The transition zone between railway embankment and structures, or different track types is known to be an area in which problems often arise and where extra care needs to be taken with maintenance. Differences in track stiffness have dynamic effects and these increase the force in the track and the extent of deformation. In this study, the criteria for the change ratio of track stiffness along transition area, and proper transition length are presented through train/track interaction analyses. Those are derived on the basis of permissible limitations of train and track performances such as rail stress, uplift force of fastener, reduction of dynamic wheel force, and acceleration of car body. A feasible method of evaluation of track stiffness which is necessary when a designer reviews whether the criteria are satisfied or not is also presented.

  • PDF

The Application of Pyrotechnic Shock in Korean Aerospace Program (한국 우주개발분야의 충격시험 적용사례)

  • Lee, Sang-Seol;Kim, Hong-Bae;Moon, Sang-Mu;Woo, Sung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1161-1168
    • /
    • 2000
  • The tenn "Pyrotechnic Shock" or "Pyroshock" is used to describe short duration, high amplitude and high frequency transient structural responses in aerospace vehicle structures..The transients are generally initiated by firing of an ordnance item to separate or release a structural member of fastener. The objective of this paper is to present a set of pyrotechnic shock environment information - specific characteristics induced by many separation devices, prediction, testing, measurement and analysis methods of pyroshock environment. In addition, it is introduced the application of pyrotechnic shock test in Korean aerospace development program.

  • PDF

An Experimental Study of Friction Coefficient Variation Due to Vibration for Bolted Joint (볼트 체결시 진동에 의한 마찰계수 변화에 관한 실험)

  • Song, Chang-Kyu;Lee, Sang-Don;Cho, Yung-Joo
    • Tribology and Lubricants
    • /
    • v.23 no.2
    • /
    • pp.61-65
    • /
    • 2007
  • It is very important to connect machinery and maintain it. This is usually done by bolt joint. There are two ways in connecting the bolt joint : the angle method and the torque method. The torque method is a method that let the clamping force maintain. The underhead of the bolt's head and the thread friction are the main influences. This study focuses on how the clamping farce and friction coefficient change under the condition in vibrating the underhead of the bolt's head part. As a result, under vibration condition, we found out that the clamping farce increases, while the friction coefficient decreases.

A Study on the Optimization of Position Tolerance of Fasteners Considering Process Capability (공정능력을 고려한 체결구 부품의 위치공차 최적화 방법 연구)

  • Lee, Sang-Hyun;Lee, Tae-Gun;Chang, Sung-Ho
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.04a
    • /
    • pp.417-428
    • /
    • 2008
  • Designers have to consider voice of customer, process capability, manufacturing standards & condition, manufacturing method, characteristics of products to decide tolerances. Especially, in case of position of hole and pin, designers have to consider process capability to decide tolerances. The traditional position tolerances used in a drawing are theoretical values which are allocated to position under the worst case assembling condition that both hole and pin are the maximum material condition(MMC). However, When the process capability is high, more exact product size can be produced under stable manufacturing condition. larger clearance of hole and pin can be allocated. In this point of view, manufacturer could increase the yield by allocating larger position tolerance than theoretical position tolerance of hole and pin considering process capability.

  • PDF

A Study on the Optimization of Position Tolerance of Fasteners Considering Process Capability (공정능력을 고려한 체결구 부품의 위치공차 최적화 방법 연구)

  • Lee, Sang-Hyun;Lee, Tae-Geun;Chang, Sung-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.75-85
    • /
    • 2009
  • Designers have to consider voice of customer, process capability, manufacturing standards & condition, manufacturing method and characteristics of products to decide tolerances. Especially, in case of position of hole and pin, designers have to consider process capability to decide tolerances. The traditional position tolerances used in a drawing are theoretical values which are allocated to position under the worst case assembling condition that both hole and pin are the maximum material condition(MMC). However, when the process capability is high, more exact product size can be produced under stable manufacturing condition. Larger clearance of hole and pin can be allocated. In this point of view, manufacturer could increase the yield by allocating larger position tolerance than theoretical position tolerance of hole and pin considering process capability.

Effect of Track Resistance on Linear Thermal Buckling Characteristics of CWR (도상이 장대 레일의 선형 온도 좌굴에 미치는 영향)

  • 강영종;임남형;신정렬;양재성
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.580-587
    • /
    • 1998
  • For many decades, the railway was constructed using tracks with jointed rails of relatively short lengths in accordance with rolling and handling technology. The joints cause many drawbacks in the track and lead to significant maintenance cost. So, railroad engineers became interested in eliminating joints to increase service loads and speeds by improving rolling, welding, and fastening technology, Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. But in the case of the elimination of rail joints, it may cause the track to be suddenly buckled laterally by thermal and vehicle loads. Thermal loads are caused by an increase in the temperature of railway track. In this paper, CWR track model and CWRB program are developed for linear buckling analysis using finite element method(FEM). The finite element discretization is used with a total of 14 degrees of freedom for each rail element. The stiffness of the fastener, tie, and ballast bed are included by a set of spring elements. The investigation on the buckling modes and temperature of CWR track is presented in the paper.

  • PDF

A Study on the Anti-Vibration Characteristics of the Under Sleeper Pad (방진침목패드의 방진특성에 관한 연구)

  • 황선근;엄기영;고태훈;오상덕
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.369-374
    • /
    • 2001
  • It was estimated that the anti-vibration measures at the source location of railroad are the most active and effective ones. Among CWR(Continuously Welded Rail), elastic rail fastener, floating slab, ballast mat, under sleeper pad, etc. like these various kinds of measures in the source, under sleeper pad as an anti-vibration measure was constructed at the railroad track supporting structures in the Jeon-la Line. In this study, through the field measurement of vibration at the railroad track supporting structures and nearby the ground, the vibration reduction effect of under sleeper pad were evaluated by insertion loss. As a result, vibration reduction effects were 5.0∼12.5㏈ on the concrete slab of the bridge, 3.9∼7.5㏈ on the ground nearby the bridge respectively.

  • PDF

Nonlinear earthquake response analysis of CWR on bridge considering soil-structure interaction. (지반-구조물 상호작용을 고려한 교량상 장대레일의 비선형 지진응답해석)

  • Shin Ran Cheol;Cho Sun Kyu;Yang Shin Chu;Choi Jun Seong
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.733-738
    • /
    • 2004
  • Recently continuous welded rail is generally used to ensure running performances and to overcome the problems such as structural vulnerability and fastener damage at the rail expansion joint. Though the use of continuous welded rail on bridge has the advantage of decreasing the vibration and damage of rail, it still the risk of buckling and breaking of rail due to change of temperature, starting and/or breaking force, axial stress concentration and so on. So, VIC code and many methods has been developed by researchers considering rail-bridge interaction. Although there are many research concerning stability of continuous welded rail about temperature change on bridge and starting and/or breaking force, the study of continuous welded mil for earthquake load is still unsufficient. In this study, the nonlinear seismic response analysis of continuous welded rail on bridge considering soil-structure interaction, geotechnical characteristic of foundation and earthquake isolation equipment has been performed to examine the stability of continuous welded rail.

  • PDF

Buckling Parameters of CWR Track: Fastner, Uplift of Tie (장대레일 좌굴 변수 : 채결재, 칠목들림)

  • Han Sang-Yun;Lim Nam-Hyung;Han Taek-Hee;Kang Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.763-768
    • /
    • 2004
  • CWR(Continuous Welded Rail) has many advantage over the conventional jointed rail track. The use of CWR track not only reduces the track maintenance cost, but increase the life cycle of track components. As the use of CWR increases in track structures, derailing disasters associating with track buckling also increase in great numbers due to high compressive thermal stress. Despite the importance, the number of studies relevant to the instability is quite limited. In this paper, It considers the contribution of rail-pad-fastener resistance, uplift of tie and nonlinear analysis. Influence of various track components on CWR track temperature and mode shape were characterized.

  • PDF

The Effect Of Standard Limits And Fits On The Productivity Of Assembly Robots (표준 Limits 및 Fits가 조립 로보트의 생산성에 미치는 영향)

  • Kim, Sunn-Ho;Knott, Kenneth
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.2
    • /
    • pp.75-86
    • /
    • 1991
  • This paper presents a methodology to enable the tolerances on mating parts of an assembly to be specified and be compatible to the precision of an assembly robot so as to achieve maximum system performance. The measure of performance is defined as the Probability of Successful Assembly (PSA). A typical loose fastener assembly, usually called peg-in-a-hole is investigated. The Geometric Tolerancing System is adopted to represent position tolerances of mating parts. Two models are presented by considering modifiers on a position tolerance, Regardless of Feature Size (RFS) and Maximum Material Condition (MMC). Using these models, it is analyzed how the Standard Limits and Fits recommended by ANSI influence the performance of an assembly robot. For this analysis, the Standard Limits and Fits are transformed to the representation scheme of the Geometric Tolerancing System. Due to low PSAs when the Standard Limits and Fits are taken into account, the effect of chamfers around a hole is also analyzed.

  • PDF