• 제목/요약/키워드: fast reactor

검색결과 492건 처리시간 0.027초

저형상비 토카막 중성자원에 기반한 핵변환로 형상 연구

  • 홍봉근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.414.2-414.2
    • /
    • 2016
  • The optimal configuration of a transmutation reactor based on a low aspect ratio tokamak is determined using coupled analysis of tokamak systems and neutron transport. The inboard radial build of the reactor components is obtained from plasma physics and engineering constraints, while outboard radial builds are mainly determined by constraints on a neutron multiplication, a tritium-breeding ratio, and a power density. It is shown that a breeding blanket model has an impact on the radial build of a transmutation blanket. A burn cycle has to be determined to limit a fast neutron fluence of a plasma facing material below a radiation damage limit.

  • PDF

Simplified Technique for 3-Dimensional Core T/H Model in CANDU6 Transient Simulation

  • Lim, J.C.
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1995년도 춘계학술발표회 초록집
    • /
    • pp.113-116
    • /
    • 1995
  • Simplified approach has been adopted for the prediction of the thermal behavior of CANDU reactor core during power transients. Based on the assumption that the ratio of mass flow rate for each core channel does not vary during the transient, quasy-steady state analysis technique is applied with predicted core inlet boundary conditions(total mass flow rate and specific enthalpy). For restricted transient case, the presented method shows functionally reasonable estimation of core thermal behavior which could be implemented in the fast running reactor simulation program.

  • PDF

핵분열 중성자스펙트럼이 핵계산에 미치는 영향 (Effects of Fission Neutron Spectra in Reactor Calculations)

  • 김정도;이종태
    • Nuclear Engineering and Technology
    • /
    • 제15권4호
    • /
    • pp.280-285
    • /
    • 1983
  • 핵분열 중성자스펙트럼이 원자로핵계산에 미치는 영향을 고속임계로심의 임계계산을 통해 다각적으로 분석하였다. 검토된 내용은 Maxwell식과 Watt-Cranberg 형의 식 적용, 영역별 스펙트럼자료의 적용, Maxwell식에서 핵온도 선정에 따른 효과, 우라늄과 풀루토늄의 가중평균된 스펙트럼자료의 적용, 노심내 전에너지에 따른 핵온도를 고려한 스펙트럼자료의 적용 등이다.

  • PDF

중성자속잡음 신호를 이용한 원자로의 전동감시 (Vibration Monitoring of Reactor Internals Using Excore Neutron Flux Noise Signals)

  • 김성호;강현국;성풍현;한상준;전종선
    • 소음진동
    • /
    • 제5권3호
    • /
    • pp.361-371
    • /
    • 1995
  • The vibration of reactor internals should be monitored and diagnosed for the early detection of the failure of reactor pressure vessel. This can be performed by analyzing the time-history signals from the excore neutron flux detertors. The conventional method is an on-demand system which generates power spectra through Fast Fourier Transform(FFT) algorithm. The operator can make his own decision to detect abnormal vibration using these spectra. This post- processing method, however, requires special expertise in the reactor noise analysis and signal processing for random data. It may mislead the operator into erroneous decision-making, if he is a novice in reactor noise analysis. Hence this study is focused on the automated monitoring and diagnosis procedure for the reactor noise analysis, especially on the Fuzzy algorithm to recognize the pattern of the vibration of Core Suport Barrel. The excore neutron signals of Yonggwang Nuclear Power Plant unit 3 is acquired and analyzed using conventional FFT spectra and tested to adopt the Fuzzy method. An Automated Monitoring and Diagnosis System for CSB Vibration using this Fuzzy method is proposed. Furthermore, vibration data for CSB of Youggwang Nnclear Power Plant unit 3 is presented.

  • PDF

하나로에서의 고온재료 조사장치 개발 (Development of an Irradiation Device for High Temperature Materials in HANARO)

  • 조만순;주기남
    • 한국기계기술학회지
    • /
    • 제13권2호
    • /
    • pp.145-153
    • /
    • 2011
  • The irradiation tests of materials in HANARO have been performed usually at temperatures below $300^{\circ}C$ at which the RPV(Reactor Pressure Vessel) materials of the commercial reactors such as the light water reactor and CANDU are operated. As VHTR(Very High Temperature Reactor) and SFR(Sodium-cooled Fast Reactor) projects are being carried as a part of the present Gen-IV program in Korea, the requirements for irradiation of materials at temperatures higher than $500^{\circ}C$ are recently being gradually increased. To overcome the restriction in the use at high temperature of the existing Al thermal media, a new capsule with double thermal media composed of two kinds of materials such as Al-Ti and Al-graphite was designed and fabricated more advanced than the single thermal media capsule. At the irradiation test of the capsule, the temperature of the specimens successfully reached $700^{\circ}C$ and the integrity of Al, Ti and graphite material was maintained.

Level 1 probabilistic safety assessment of supercritical-CO2-cooled micro modular reactor in conceptual design phase

  • So, Eunseo;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.498-508
    • /
    • 2021
  • Micro reactors are increasingly being considered for utilization as distributed power sources. Hence, the probabilistic safety assessment (PSA) of a direct supercritical-CO2-cooled fast reactor, called micro modular reactor (MMR), was performed in this study; this reactor was developed using innovative design concepts. It adopted a modular design and passive safety systems to minimize site constraints. As the MMR is in its conceptual design phase, design weaknesses and valuable safety insights could be identified during PSA. Level 1 internal event PSA was carried out involving literature survey, system characterization, identification of initiating events, transient analyses, development of event trees and fault trees, and quantification. The initiating events and scenarios significantly contributing to core damage frequency (CDF) were determined to identify design weaknesses in MMR. The most significant initiating event category contributing to CDF was the transients with the power conversion system initially available category, owing to its relatively high occurrence frequency. Further, an importance analysis revealed that the safety of MMR can be significantly improved by improving the reliability of reactor trip and passive decay heat removal system operation. The findings presented in this paper are expected to contribute toward future applications of PSA for assessing unconventional nuclear reactors in their conceptual design phases.