• Title/Summary/Keyword: fast neutron

Search Result 213, Processing Time 0.187 seconds

A high-density gamma white spots-Gaussian mixture noise removal method for neutron images denoising based on Swin Transformer UNet and Monte Carlo calculation

  • Di Zhang;Guomin Sun;Zihui Yang;Jie Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.715-727
    • /
    • 2024
  • During fast neutron imaging, besides the dark current noise and readout noise of the CCD camera, the main noise in fast neutron imaging comes from high-energy gamma rays generated by neutron nuclear reactions in and around the experimental setup. These high-energy gamma rays result in the presence of high-density gamma white spots (GWS) in the fast neutron image. Due to the microscopic quantum characteristics of the neutron beam itself and environmental scattering effects, fast neutron images typically exhibit a mixture of Gaussian noise. Existing denoising methods in neutron images are difficult to handle when dealing with a mixture of GWS and Gaussian noise. Herein we put forward a deep learning approach based on the Swin Transformer UNet (SUNet) model to remove high-density GWS-Gaussian mixture noise from fast neutron images. The improved denoising model utilizes a customized loss function for training, which combines perceptual loss and mean squared error loss to avoid grid-like artifacts caused by using a single perceptual loss. To address the high cost of acquiring real fast neutron images, this study introduces Monte Carlo method to simulate noise data with GWS characteristics by computing the interaction between gamma rays and sensors based on the principle of GWS generation. Ultimately, the experimental scenarios involving simulated neutron noise images and real fast neutron images demonstrate that the proposed method not only improves the quality and signal-to-noise ratio of fast neutron images but also preserves the details of the original images during denoising.

A Strategy for Kori Unit 1 Pressure Vessel Fluence Reduction through a Modification of Outer Assembly Configuration Using Monte Carlo Analysis

  • Kim, Jae-Cheon;Kim, Jong-Kyung;Kim, Jong-Oh
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.515-519
    • /
    • 1997
  • The purpose of this study is to reduce the fast neutron fluence at the reactor pressure vessel(RPV) and to provide a basis for plant-life extension. In this study, different neutron absorbers were employed in the core outer assemblies of Kori Unit 1 Cycle 14. The modified assemblies were used to calculate fast neutron fluence at the RPV and to evaluate reduction of outer assembly power and total power in core. By comparison with the case of no suppression fixture, the fast neutron fluence of a case with two rows stainless steel around the assembly with natural uranium pins is decreased by 85.8%. It is noted that the modification of outer assembly is more efficient than the previous low leakage loading pattern (LLLP) applied to Kori Unit 1. Also, compared fast neutron fluence in Cycle 1 with Cycle 14, fast neutron fluence at the RPV between Cycle 1 and Cycle 14 is not significantly different. It is found that LLLP applied to the Kori Unit 1 has not contributed to fast neutron fluence reduction at the RPV.

  • PDF

Fast Neutron Beam Dosimetry (속중성자선의 선량분포에 관한 연구)

  • Lee Hyo Nam;Ji Young Hoon;Ji Kwang Soo;Lee Dong Han
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.71-81
    • /
    • 1997
  • I. Objective and Importance of the Project We have been using MC-50 cyclotron and NT-50 neutron therapy machine for treating cancer patients since 1986 at Korea Cancer Center Hospital. It is mandatory to measure accurately the dose distribution and the total absorbed dose of fast neutron for putting it to the clinical use. At present the methods of measurement of fast neutron are proposed largely by American Associations of Physicists in Medicine (Task Group 18), European Clinical Neutron Dosimetry Group, and International Commission on Radiation Units and Measurements. The complexity of measurement, however, induce the methodological differences between them. In our study, therefore, we tried to establish a unique technique of measurement by means of measuring the emitted doses and the dose distribution of fast neutron beam from neutron therapy machine, and to invent a standard method of measurement adequate to our situation. II. Scope and Contents of the Project For establishing a unique technique of measurement and inventing a standard method of measurement of fast neutron beam, 1. to grasp the physical characteristics of neutron therapy machine 2. to study the principles for measrement of fast neutron beam 3. to get the dose distribution (dose rate, percent-depth dose, flatness etc) throught the actual measurement 4. to compare our data with those being cited world-widely.

  • PDF

Effects of Fast Neutron Irradiation on Switching of Silicon Bipolar Junction Transistor

  • Sung Ho Ahn;Gwang Min Sun
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.124-130
    • /
    • 2023
  • Background: When bipolar junction transistors (BJTs) are used as switches, their switching characteristics can be deteriorated because the recombination time of the minority carriers is long during turn-off transient. When BJTs operate as low frequency switches, the power dissipation in the on-state is large. However, when BJTs operate as high frequency switches, the power dissipation during switching transients increases rapidly. Materials and Methods: When silicon (Si) BJTs are irradiated by fast neutrons, defects occur in the Si bulk, shortening the lifetime of the minority carriers. Fast neutron irradiation mainly creates displacement damage in the Si bulk rather than a total ionization dose effect. Defects caused by fast neutron irradiation shorten the lifetime of minority carriers of BJTs. Furthermore, these defects change the switching characteristics of BJTs. Results and Discussion: In this study, experimental results on the switching characteristics of a pnp Si BJT before and after fast neutron irradiation are presented. The results show that the switching characteristics are improved by fast neutron irradiation, but power dissipation in the on-state is large when the fast neutrons are irradiated excessively. Conclusion: The switching characteristics of a pnp Si BJT were improved by fast neutron irradiation.

Turn-off time improvement by fast neutron irradiation on pnp Si Bipolar Junction Transistor

  • Ahn, Sung Ho;Sun, Gwang Min;Baek, Hani
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.501-506
    • /
    • 2022
  • Long turn-off time limits high frequency operation of Bipolar Junction Transistors (BJTs). Turn-off time decreases with increases in the recombination rate of minority carriers at switching transients. Fast neutron irradiation on a Si BJT incurs lattice damages owing to the displacement of silicon atoms. The lattice damages increase the recombination rate of injected holes with electrons, and decrease the hole lifetime in the base region of pnp Si BJT. Fast neutrons generated from a beryllium target with 30 MeV protons by an MC-50 cyclotron were irradiated onto pnp Si BJTs in experiment. The experimental results show that the turn-off time, including the storage time and fall time, decreases with increases in fast neutron fluence. Additionally, it is confirmed that the base current increases, and the collector current and base-to-collector current amplification ratio decrease due to fast neutron irradiation.

Delayed fast neutron as an indicator of burn-up for nuclear fuel elements

  • Akyurek, T.;Shoaib, S.B.;Usman, S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3127-3132
    • /
    • 2021
  • Feasibility study of burn-up analysis and monitoring using delayed fast neutrons was investigated at Missouri University of Science and Technology Reactor (MSTR). Burnt and fresh fuel elements were used to collect delayed fast neutron data for different power levels. Total reactivity varied depending on the burn-up rate of fuel elements for each core configuration. The regulating rod worth was 2.07E-04 𝚫k/k/in and 1.95E-04 𝚫k/k/in for T121 and T122 core configurations at 11 inch, respectively. Delayed fast neutron spectrum of F1 (burnt) and F16 (fresh) fuel elements were analyzed further, and a strong correlation was observed between delayed fast neutron emission and burn-up. According to the analyzed peaks in burnt and fresh fuels, reactor power dependency was observed and it was determined that delayed neutron provided more reliable results at reactor powers of 50 kW and above.

Investigation of Response of Several Neutron Surveymeters by a DT Neutron Generator (DT 중성자 발생기에 의한 중성자 검출기 반응도 조사)

  • Kim, Sang-In;Jang, In-Su;Kim, Jang-Lyul;Lee, Jung-Il;Kim, Bong-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.35-40
    • /
    • 2012
  • Several neutron measuring devices were tested under the neutron fields characterized with two distinct kinds of thermal and fast neutron spectrum. These neutron fields were constructed by the mixing of both thermal neutron fields and fast neutron fields. The thermal neutron field was constructed using by a graphite pile with eight AmBe neutron sources. The fast neutron field of 14 MeV was made by a DT neutron generator. In order to change the fraction of fast neutron fluence rate in each neutron fields, a neutron generator was placed in the thermal neutron field at 50 cm and 150 cm from the reference position. The polyethylene neutron collimator was used to make moderated 14 MeV neutron field. These neutron spectra were measured by using a Bonner sphere system with an LiI scintillator, and dosimetric quantities delivered to neutron surveymeters were determined from these measurement results.

The multigroup library processing method for coupled neutron and photon heating calculation of fast reactor

  • Teng Zhang;Xubo Ma;Kui Hu;GuanQun Jia
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1204-1212
    • /
    • 2024
  • To accurately calculate the heating distribution of the fast reactor, a neutron-photon library in MATXS format named Knight-B7.1-1968n × 94γ was processed based on the ENDF/B-VII.1 library for ultrafine groups. The neutron cross-section processing code MGGC2.0 was used to generate few-group neutron cross sections in ISOTXS format. Additionally, the self-developed photon cross-section processing code NGAMMA was utilized to generate photon libraries for neutron-photon coupled heating calculations, including photo-atom cross sections for the ISOTXS format, prompt photon production cross sections, and kinetic energy release in materials (KERMA) factors for neutrons and photons, and the self-shielding effect from the capture and fission cross sections of neutron to photon have been taken into account when the photon source generated by neutron is calculated. The interface code GSORCAL was developed to generate the photon source distribution and interface with the DIF3D code to calculate the neutron-photon coupling heating distribution of the fast reactor core. The neutron-photon coupled heating calculation route was verified using the ZPPR-9 benchmark and the RBEC-M benchmark, and the results of the coupled heating calculations were analyzed in comparison with those obtained from the Monte Carlo code MCNP. The calculations show that the library was accurately processed, and the results of the fast reactor neutron-photon coupled heating calculations agree well with those obtained from MCNP.

Study on changes in electrical and switching characteristics of NPT-IGBT devices by fast neutron irradiation

  • Hani Baek;Byung Gun Park;Chaeho Shin;Gwang Min Sun
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3334-3341
    • /
    • 2023
  • We studied the irradiation effects of fast neutron generated by a 30 MeV cyclotron on the electrical and switching characteristics of NPT-IGBT devices. Fast neutron fluence ranges from 2.7 × 109 to 1.82 × 1013 n/cm2. Electrical characteristics of the IGBT device such as I-V, forward voltage drop and additionally switching characteristics of turn-on and -off were measured. As the neutron fluence increased, the device's threshold voltage decreased, the forward voltage drop increased significantly, and the turn-on and turn-off time became faster. In particular, the delay time of turn-on switching was improved by about 35% to a maximum of about 39.68 ns, and that of turn-off switching was also reduced by about 40%-84.89 ns, showing a faster switching.

대두의 방사선 감수성에 관한 연구(예보)

  • Shin-Han Kwon;Kun-Hyuk Im;Byeo-Jeong Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.2
    • /
    • pp.46-49
    • /
    • 1964
  • 1. 본 시험에 사용된 선량범위내에서는 기건종자에 의한 Thermal neutron이나 X-ray의 처리가 발아율에 크게 영향을 미치지 못하였는데 Fast neutorn 처리종자의 발아율은 선량의 증가에 따라 거의 직선적 저하를 보였다. 2. 선량의 증가에 따라 기형엽발생율은 증가하였으며 특히 Fast neutron에서는 동일 flux일망정 Thermal neutron 조사구에 비해 발생율은 높다. 3. 저선량에서의 기형엽출현은 유식물기에서만 봇 수 있으며 성장함에 따라 회복한다. 이는 정상세포와 이상세포간의 분열속도의 차에 기인되는 상 싶다. 4. 같은 선량에서는 Fast neutron이 Thermal neutron에 비해 그 영향력이 크다는 것이 확실하며 이는 Energy의 차에서 오는 결과이다. 5. 일반적으로 선량의 증가에 따라 성숙이 연장되는 경향이 있었으며, 반면에 아주 희귀하기는 하나 개화와 성숙이 촉진되는 고체도 발견되었다. 6. 선량의 증가에따라 다소 왜소화되기는 하나 저선량에서는 오히려 유의성은 없으나 초장이 증가하였다. 7. 생육초기와 생육종기에 있어서의 선량에 따르는 초장에 대한 영향은 그 초기에 있어서 더 현저하며 성장함에 따라 회복되는 경향을 보인다. 8. 발아와 생육에 별 지장이 없이 재배할 수 있는 선량범위는 Thermal neutron에서 $1O^13$ N/$cm^2$, Fast neutron에서 5$\times$$1O^12$N/$cm^2$ 이하이면 무난할 것이며, X-ray는 본 시험에 이용한 32 Kr 이상에서도 이용에 지장이 없을 것이다.

  • PDF