• Title/Summary/Keyword: fast ion

Search Result 318, Processing Time 0.03 seconds

Ion Permeation in Compounds for the Power Cable Sheath (배전케이블 외피용 컴파운드의 이온투과 특성)

  • Kim, Dong-Myung;Park, Kwang-Seok;Suh, Kwang-S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.864-865
    • /
    • 1998
  • Permeation of $Ca^{2+}$ ions in PVC and flame-retardant polyolefin (FR) compounds for the sheath of medium voltage underground cables was studied. At $70^{\circ}C$ ion permeation increases fast at times of up to a few tens of hour and then at a relatively slow rate. The first fast increase was attributed to the diffusion of ions in the samples while the second slow increase of ion permeation was attributed to the permeation of $Ca^{2+}$ ions through the samples. It was also found that the diffusivity of $Ca^{2+}$ ions in FR compounds is much higher than that in PVC compounds.

  • PDF

Poly(vinyl alcohol) based Solid Polymer Electrolyte with Fast Cationic Transport Process

  • Jo, Yun-Kyung;Lee, Yu-Jin;Jo, Nam-Ju
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.187-187
    • /
    • 2006
  • A new type solid polymer electrolyte (SPE) composed of poly (vinyl alcohol) (PVA) and lithium trifluoromethanesulfonate ($LiCF_{3}SO_{3}$) was prepared by means of the solution cast technique to observe that Li ion can move by ion hopping decoupled from polymer segmental motion inside of the 'fast cationic transport process'. The highest ion conductivity of the SPEs obtained from ac impedance measurements was $1.42{\times}10^{-3}S/cm$ at room temperature for SPE with 80wt% of salt concentration. Using LSV, we found that the SPEs had good electrochemical stabilities and using FT-IR and AFM, we found the formation of network-like structure.

  • PDF

Development of the Collective Thomson Scattering System in KAERI

  • Park, Min;Kim, Seon-Ho;An, Chan-Yong;Kim, Seong-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.521-521
    • /
    • 2013
  • Collective Thomson scattering (CTS) system is being developed in KAERI based on high power gyrotrons. CTS is a promising diagnostic method to measure fast ion distributions and potentially the fusion product alpha particles in magnetically confined plasmas. By utilizing millimeter-waves from high power gyrotrons as a probing beam, spatially and temporally resolved 1-D ion velocity distributions can be obtained from the scattered radiation with less scattering geometrical constraints. The pulse modulation of gyrotrons enables to separate scattering signal from ECE background noises. The feasibility was assessed with the calculation of spectral density functions under the condition of KSTAR plasmas. Further CTS system requirements are also discussed.

  • PDF

The effect of ion to electron mass ratio on Ion beam driven instability and ion holes by PIC simulation

  • Hong, Jin-Hy;Lee, En-Sang;Min, Kyoung-Wook;Parks, George.K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.92.2-92.2
    • /
    • 2012
  • Previous simulations posed a problem that they used reduced ion to electron mass ratios to save computation time. It was assumed that ion and electron dynamics are sufficiently separated, but it was not clearly verified. In this study, we examine the effect of ion to electron mass ratios on the generation of ion holes by ion beam driven instability. Ion holes are generated via electron holes in an applied electric field with the given initial condition. First, the ion acoustic instability is excited and nonlinearly develops. After the ion acoustic instability nonlinearly develops, the ion two-stream instability is excited and develops into ion holes. This implies that the previously suggested ion beam driven instability is strongly affected by the coupling between ions and electrons and the ion to electron mass ratio is important on the development of the instability. The energy transition and detail variation is different as reduced mass ratio under the same observation value based on FAST satellite. Although, the parameters are rescaled by conserving the kinetic energy to obtain the proper results, the nonlinear evolution is not perfectly identical.

  • PDF

Ion Migration in Metal Halide Perovskites

  • Nur'aini, Anafi;Lee, Seokwon;Oh, Ilwhan
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.71-77
    • /
    • 2022
  • Metal halide perovskites are promising photovoltaic materials, but they still have some issues that need to be solved. Hysteresis is a phenomenon that strongly is correlated with ion migration; thus, a fast, easy, and low-temperature method for measuring ion migration is required. Through selective blocking, ion migration can be measured separately, apart from electron migration. In this study, ion migration in metal halide perovskites was measured using a vertical device. At different temperatures, ionic activation energies were obtained for a range of perovskite compositions such as MAPbI3, FAPbI3, CsPbI3, and MAPbBr3. By comparing the measured ionic activation energies with the theoretical values, we conclude that among other possibilities, I- is the migrating ion in MAPbI3, FAPbI3, CsPbI3, and Br- is the migrating in MAPbBr3.

Determination of Trace Metals in Atmospheric Particulates by Ion Chromatography

  • Lee Yong-Keun;Kim Hak-Chul;Lee Dong Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1045-1049
    • /
    • 1994
  • A simple and fast ion chromatographic method is developed for the determination of transition metals such as Fe, Cu, Ni, Zn and Co in atmospheric particulates. The method involves acid digestion, on-column preconcentration, and subsequent ion chromatogaphic detection. The precision of the method is less than 3${\%}$ RSD at parts per billion level for the metals studied. No significant interferences are observed. The results obtained with this method agree well with those by ICP-AES.

The Anti-Bacterial Properties of LTP Crystallized Glass by Ag Ion Exchange (LTP계 결정화유리의 Ag이온교환에 따른 항균특성)

  • 권면주;윤영진;강원호
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.3
    • /
    • pp.183-188
    • /
    • 2002
  • Antibacterial glass ceramics composed of $5Li_2O{\cdot}36CaO{\cdot}20TiO_2{\cdot}27P_2O_5$ were Prepared. After ion exchange in the $AgNO_3$solution, crystallization phases were $AgTi_2(PO_4)_3$, $LiTi_2(PO_4)_3$ and $Ca_3(PO_4)_2$. In case of ion exchange, the crystallization phases started to be transformed from $LiTi_2(PO_4)_3$ to $AgTi_2(PO_4)_3$in 0.5 mole $AgNO_3$ solution and the transformation was almost completed in 1.0 mole. ion exchange rate of glass-ceramics powder, considering ion exchange time, was more fast than that of bulk. The bacteriostatic effect of the glass-ceramics on Staphyloroccus aureus and Salmonella typhi bacteria was more excellent than that of glass when the crystallization phase was transformed from LTP to AgTP.

  • PDF

EO performance of IPS cell on the inorganic films surface using DuoPIGatron ion source (유기박막표면에 DuoPIGatron 이온소스를 이용한 IPS 셀의 전기광학 특성)

  • Kim, Byoung-Yong;Hwang, Jeoung-Yeon;Kim, Sang-Hun;Han, Jung-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.89-90
    • /
    • 2006
  • Electro-optical (EO) characteristics of in-plane switching (IPS) cell on the polyimide surface using obliquely ion beam (IB) exposure as new ion beam (IB) type system (DuoPIGatrion ion source). A good uniform alignment of the nematic liquid crystal (NLC) alignment with the ion beam exposure on the polyimide surface was observed. In addition, it can be achieved the good EO properties of the ion-beam-aligned IPS-cell on poly imide surface ; the stable VT curve in the ion-beam-aligned IPS cell on a poly imide (PI) surface with ion beam exposure using new type IB equipment was obtained. and the fast response time in the ion-beam-aligned IPS cell on a polyimide (PI) surface with ion beam exposure using new type IB equipment was obtained.

  • PDF

EO performance of TN cell on the inorganic films surface using DuoPIGatron ion source on NDLC thin film (무기박막표면에 DuoPIGatron 이온소스를 이용한 TN-LCD 셀의 전기광학 특성)

  • Kim, Byoung-Yong;Hwang, Jeoung-Yeon;Kim, Sang-Hun;Han, Jung-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.432-433
    • /
    • 2006
  • Electro-optical (EO) characteristics of twisted nematic (TN) - liquid crystal display (LCD) on the NDLC thin film using obliquely ion beam (IB) exposure as new ion beam (IB) type system (DuoPIGatrion ion source). A good uniform alignment of the nematic liquid crystal (NLC) alignment with the ion beam exposure on the NDLC thin film was observed. In addition, it can be achieved the good EO properties of the ion-beam-aligned TN-cell on polyimide surface ; the stable VT curve in the ion-beam-aligned TN cell on the NDLC thin film with ion beam exposure using new type IB equipment was obtained. and the fast response time in the ion-beam-aligned TN cell on the NDLC thin film with ion beam exposure using new type IB equipment was obtained.

  • PDF

CHROMOSPHERIC MAGNETIC RECONNECTION ON THE SUN

  • CHAE JONGCHUL;CHOI BYUNG-Kyu;PARK MIN-JU
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.59-65
    • /
    • 2002
  • Solar observations support that magnetic reconnect ion ubiquitously occurs in the chromosphere as well as in the corona. It is now widely accepted that coronal magnetic reconnect ion is fast reconnect ion of the Petschek type, and is the main driver of solar flares. On the other hand, it has been thought that the traditional Sweet-Parker model may describe chromospheric reconnect ion without difficulty, since the electric conductivity in the chromoshphere is much lower than that in the corona. However, recent observations of cancelling magnetic features have suggested that chromospheric reconnect ion might proceed at a faster rate than the Sweet-Parker model predicts. We have applied the Sweet-Parker model and Petschek model to a well-observed cancelling magnetic feature. As a result, we found that the inflow speed of the Sweet-Parker reconnect ion is too small to explain the observed converging speed of the feature. On the other hand, the inflow speeds and outflow speeds of the Petschek reconnect ion are well compatible with observations. Moreover, we found that the Sweet-Parker type current sheet is subject to the ion-acoustic instability in the chromosphere, implying the Petschek mechanism may operate there. Our results strongly suggest that chromospheric reconnect ion is of the Petschek type.