• Title/Summary/Keyword: fast ion

Search Result 318, Processing Time 0.026 seconds

Fabrication and pH response characteristics of LAPS(Light addressable potentiometric sensor) with electrolyte/$Si_3N_4/SiO_2$/Si structure (Electrolyte/$Si_3N_4/SiO_2/Si$ 구조의 LAPS 제작 및 pH 응답특성)

  • Chang Su-Won;Koh Kwang-Nak;Kang Shin-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.40-44
    • /
    • 1998
  • The LAPS device of fast response and high sensitivity, based on electrochemical potential difference, and its system were fabricated for the precise measurement of pH changes and its characteristic were investigated. The electrostatic variation characteristics of LAPS according to the pH changes and parameters in the device were verified through a simulation using LAPS equivalent circuit model. The LAPS device and its system were fabricated on the basis of the result of simulation. The fabricated LAPS system showed linear sensitivity (about 56 mV/pH within the range of pH 2 to pH 11. In order to overcome the defect of general urea sensor (especially slow response time), urease immobilized nitrocellulose membrane was attached on the LAPS and resulted in the very fast response time, 0.29 mV/sec, 0.86 mV/sec at urea concentration of $50{\mu}g/ml,\; 500{\mu}g/ml$, respectively. And also in order to measure the uranyl ion, the uranyl ion selective sensing membrane with calix[6]arene derivative was used and its sensitivity was 25mV/concentration decade in the wide uranyl ion concentration range of $10^{-11}M\;to\;10^{-4}M$.

Development of Binder Materials for Si-based Anode in Lithium-ion Batteries (리튬이온전지 실리콘계 음극 바인더 소재 개발)

  • Jihee, Yoon;Jung-Keun, Yoo
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.365-370
    • /
    • 2022
  • According to the rapid growth of electric vehicle (EVs) and E-mobility market, Li-ion batteries are one of the most progressive technologies. The demand of LIBs with high energy capacity, rate performance and fast charging is continuously increasing, hence high-performance LIBs should be developed. Si is considered as the most promising anode material to improve energy density because of its high theoretical capacity. However, Si suffers large volume chances during the charging and discharge process, leading to the fast degradation of cycle performance. Therefore, polymeric binders play a key role in electrochemical performance of Si anode by efficiently enduring the Si expansion and maintaining the binding networks in electrode. In this review, we explain the role of polymeric binders in electrode and introduce the anode binders with enhanced mechanical and chemical properties which can improve electrochemical performances of Si-based anode.

The Determination of Iodine in Human Milk and Cow Milk by Iodide Specific Ion electrode and Neutron Activation Analysis (요오드 전극을 이용한 방법과 중성자방사화 분석에 의한 모유 및 우유내 요오드 함량 분석 방법 비교)

  • 문수재
    • Journal of Nutrition and Health
    • /
    • v.31 no.2
    • /
    • pp.213-219
    • /
    • 1998
  • This study was conducted to compare and evaluate the iodide specific ion electrode method (ISE) and neutron activation analysis method (NAA) for determining iodine in human milk and cow milk. The neutron irradiation and counting operations were carried out at the TRIGA Mark-III reactor facility of the Korea Atomic Energy Research Institute. The mean concentrations of iodine in human milk samples by the ISE and the NAA were 1450$\mu\textrm{g}$/L and 1350$\mu\textrm{g}$/L, respectively. The levels were not significantly different. In cow milk samples , the mean concentrations of iodine by the ISE and the NAA were 250$\mu\textrm{g}$.L and 200$\mu\textrm{g}$/L, respectively. here, the ISE reading was significantly higher than the NAA. reading. The correlations of the two methods were 0.92(p<0.001) for human milk samples and 0.65 for cow milk samples . The coefficient of variation was 8.3% in the ISE and 4.9% in the NAA. Therefore, the iodide specific ion electrode method is sample and fast method, but probably not in processed milk since free sulfhydryl groups in milk are also detected by the iodide electrode. However, these also indicate that the ISE method may be applicable to human milk and pasteurized milk if the conventional pasteurization time-temperature relationship of standards is not exceeded. On the other hand, the NAA method , which is independent of chemical forms and matrix, can be used for determining iodine in all kinds of milk and foods.

  • PDF

Computer Simulation Study of the Potential Anti-arrhythmic Properties of Paeonol (Paeonol의 잠재적인 항부정맥 효과의 컴퓨터 시뮬레이션 연구)

  • Lee, Soojin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.305-312
    • /
    • 2015
  • Paeonol is a major component found in the Paeoniaceae family such as Paeonia suffruticosa Andrews. Paeonia suffruticosa Andrews has traditionally been used to enhance blood flow and relieve joint pain in east Asian countries including China, Korea and Japan. Current research has shown that paeonol blocked the voltage-gated sodium channel and L-type calcium channel. However, there is a lack of research to reveal the relation between cardiac function and blockade of ion channels by paeonol. Therefore, the aim of this study is to investigate whether paeonol has anti-arrhythmic effects via modulating cardiac ion channels. It is collected that the effects of paeonol on multiple ion channels such as the fast sodium channel and L-type calcium channel from published papers. To incorporate the information on multi-channel block, we computed the effects using the mathematical cardiac model of the guinea-pig and rat ventricular cells (Noble 1998 and 1991 model) and induced early after-depolarizations (EADs) to generate an arrhythmia in the whole heart. Paeonol slightly shortened the action potential duration in the normal cardiac ventricular action potential by the inhibition of sodium channel and L-type calcium channel. Paeonol presented the protective effect from EADs by the inactivation of sodium channel but not L-type calcium channel. Paeonol did not show any changes when it treated on normal ventricular cells through the inhibition of sodium channel, but the protective effect of paeonol through sodium channel on EADs was dose-dependent. These findings suggest that paeonol and its original plant may possess anti-arrhythmic activity, which implies their cardioprotective effects.

Theoretical Studies on The Cationic Polymerization Mechanism of Oxetanes (산촉매하의 옥세탄 공중합에 관한 분자 궤도론적 연구)

  • Cheun, Young-Gu;Kim, Joon-Tae;Park, Seong-Kyu
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.636-644
    • /
    • 1991
  • The cationic polymerization of substituted oxethanes which have pendant energetic groups such as methoxy, azido, and nitrato are investigated theoretically using the semiempirical MINDO/3, MNDO, and AM1 methods. The nucleophilicity and basicity of substituted oxethanes can be explained by the negative charge on oxygen atom of oxetanes. The reactivity of propagation in the polymerization of oxetanes can be represented by the positive charge on carbon atom and the low LUMO energy of active species of oxetanes. The reaction of the energetic cyclic oxonium ion forms to the open chain carbenium ion forms is expected by computational stability energy of the oxonium and carbenium ion (about 10~20 kcal/mole) favoring the carbenium ion. The relative equilibrium concentration of cyclic oxonium and open carbenium ions is found to be a major determinant of mechanism, owing to the rapid equilibrium of these cation forms and the expectation based on clauclation that the prepolymer propagation step SN1 mechanism will be at least as fast as that for SN2 mechanism.

  • PDF

Theoretical Studies on the Cationic Polymerization Mechanism of Oxiranes (산촉매하의 옥시란 공중합에 관한 분자궤도론적 연구)

  • Young-Gu Cheun
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.461-468
    • /
    • 1991
  • The cationic polymerizations of substituted oxiranes which have pendant energetic groups such as azido, and nitrato, are investigated theoretically using the semiempirical MNDO, and $AM_1$ methods. The nucleophilicity and basicity of substituted oxiranes can be explained by the negative charge on oxygen atom of oxiranes. The reactivity of propagation in the polymerization of oxiranes can be represented by the positive charge on carbon atom and the low LUMO energy of active species of oxiranes. Ring opening of the complexed cyclic oxonium ion to the open chain carbenium ion is expected computational stability of the oxonium and carbenium ion by 30∼40 kcal/mol favoring the carbenium ion. The relative equilibrium concentration of cyclic oxonium and open carbenium ions will be a major determinant of mechanism. The chain growth $SN_1$, mechanism will be at least as fast as that for $SN_2$ mechanism.

  • PDF

Adsorption of Uranium (VI) Ion on Synthetic Resin Adsorbent with Styrene Hazardous Materials (Styrene 위험물을 포함한 합성수지 흡착제에 의한 우라늄(VI) 이온의 흡착)

  • Kim, Joon-Tae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • Resins were synthesized by mixing 1-aza-15-crown-5 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous materials) and divinylbenzene (DVB) copolymer with crosslinkage of 1%, 2%, 8%, and 16% by substitution reaction. The characteristic of these resins was confirmed by content of chlorine, element analysis, thermogravimetric analysis (TGA), surface area (BET), and IR-spectroscopy. The effects of pH, time, dielectric constant of solvent and crosslinkage on adsorption of metal ion by the synthetic resin adsorbent were investigated. The metal ion showed a fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in an increasing order of uranium $(UO_2^{2+})$ > lead $(Pb^{2+})$ > chromium $(Cr^{3+})$ ion. The adsorption was in the order of 1%, 2%, 8%, and 16% crosslinkage resin and adsorption of resin decreased in proportion to the order of dielectric constant of solvents.

Chiral Separation of Quinolone Antibacterial Agent by Capillary Electrophoresis (모세관 전기 영동을 이용한 퀴놀린계 항생제의 광학 이성질체 분석)

  • Gang, Dae Cheon;Jo, Seung Il;Jeong, Du Su;Choe, Gyu Seong;Kim, Yong Seong
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.5
    • /
    • pp.412-429
    • /
    • 2002
  • Chiral separation of gemifloxacin, an quinolone antibacterial agent, using (+)-(18-crown-6)-tetracar-boxylic acid $(18C6H_4)$ as a chiral selector was performed by capillary electrophoresis (CE). Direct analysis of quinolone antibacterial agent in body fluid is beneficial in terms of fast analysis time, multicomponent analysis. However, high con-centration of sodium ion in body fluid can prevent gemifloxacin from interacting with $18C6H_4$ since sodium ion has high affinity with $18C6H_4$ due to the strong charge interaction. Ethylenediaminetetraacetic acid (EDTA), as a chelating ligand, was added in the running buffer in order to reduce the interaction between sodium ion and the chiral selector. Increased separation efficiency and reduced migration time were observed while sodium ion exists in the sample solution at the concentration up to 150 mM.

Adsorption Characteristics of Uranium (VI) Ion on OenNdien Resin with Styrene Hazardous Material (스타이렌 위험물을 포함한 OenNdien 수지에 의한 우라늄(VI) 이온의 흡착 특성)

  • Kim, Joon-Tae
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.697-702
    • /
    • 2011
  • Ion exchange resins have been synthesized from chloromethylated styrene-1,4-divinylbenzene (DVB) with 1%, 2%, 5% and 15%-crosslinkage and macrocyclic ligand of $OenNdien-H_4$ by copolymerization. The adsorption characteristics of uranium (${UO_2}^{2+}$), potassium ($K^+$) and neodymium ($Nd^{3+}$) metallic ions have been investigated. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time, and crosslinkage on adsorption of metallic ions were also studied. The uranium ion showed the fast adsorption on the resins above pH 3. The optimum equilibrium time for the adsorption of metallic ions was about two hours. The adsorption selectivity determined in methanol solution was in increasing order uranium (${UO_2}^{2+}$) > potassium ($K^+$) > neodymium ($Nd^{3+}$) ion. Moreover, the adsorption was increased with the crosslinkage concentration in order of 1%, 2%, 5% and 15%-crosslinkage resin.

Si@C/rGO Composite Anode Material for Lithium Ion Batteries (리튬 이온 전지용 음극으로서의 Si@C/rGO의 합성)

  • Chaehyun Kim;Sung Hoon Kim;Wook Ahn
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.2
    • /
    • pp.73-79
    • /
    • 2024
  • As the use of fossil fuels has gradually increased, so has the emission of greenhouse gases such as carbon dioxide, leading to environmental problems. As a result, lithium-ion batteries (LiB) have emerged as the solution to this issue. To manufacture medium to large-sized lithium-ion batteries (LiB), it requires electrodes with high capacity and fast charging capabilities. Silicon (Si) is considered a next-generation anode with high-capacity properties, so, reduced graphene oxide (rGO) was compounded with Si@resorcinol-formaldehyde resin (RF) composite to prevent the volume expansion of Si. It was confirmed that the composite anode prepared exhibited improved capacity and enhanced stability.