본 논문에서는 효율적인 차량 객체를 추적하는 특징점 매칭을 이용한 다중 차량 객체 검출 알고리즘을 제안한다. 제안하는 알고리즘은 효율적인 차량 객체 추적을 위해 FAST 알고리즘을 이용해서 차량의 특징점을 추출한다. 그리고 5X5 영역으로 분할 된 영상에서 특징점이 포함되면 True 포함되지 않으면 False로 해당 영역을 검은색으로 후처리하여 차량 객체을 제외한 불필요한 객체 정보를 제거한다. 그리고 후처리 된 영역을 차량의 최대 탐색창 크기로 설정하고, 차량의 최외각 특징점을 이용한 최소 탐색창을 설정하여 Mean-Shift 알고리즘의 탐색창 크기에 대한 단점을 보완하여 차량 객체 추적을 한다. 제안한 방법의 성능 평가하기위해 SIFT, SURF 알고리즘을 비교하여 실험한다. 그 결과 SIFT 알고리즘에 비해서 약 4배 빠르고 SUFR 알고리즘의 처리 과정 보다는 효율적으로 검출하는 장점이 있다.
본 논문에서는 영상 백터 양자화를 위한 새로운 고속 부호화 기법을 제안하는데, 제안 기법은 다차원의 참조 표로 복수 특징의 부분 거리를 사용한다. 복수 특징을 사용하는 기존 기법은 탐색 순서와 연산 과정을 고려할 때 복수 특징을 단계적으로 처리한다. 반면에 제안 기법은 참조 표를 사용하여 복수 특징들을 동시에 활용한다. 본 논문에서는 가용한 수준의 메모리를 위해 테두리 효과를 고려하는 참조 표의 구성 방법과 참조 표의 부분 거리를 활용하며 현재의 탐색을 중지하는 방법을 상세하게 기술한다. 시뮬레이션 결과는 제안 기법의 효율성을 확인시켜 주는데, 부호책 크기가 256일 때 제안 기법은 OHTPDS 기법이나 $M-L_2NP$ 기법 등과 같이 최근에 제안된 기법들이 요구하는 연산량의 $70\%$ 수준까지 연산량을 감소시킨다. 가용한 수준의 전처리와 메모리를 사용함으로써 제안 기법은 전체탐색 기법과 통일한 화질을 유지하면서 전체 탐색 기법이 요구하는 연산량의 $2.2\%$ 이하로 연산량을 감소시킨다.
Motion Estimation which is used to reduce the redundant data plays an important role in video compressions. However, it requires huge computational complexity of the encoder part. And therefore many fast motion estimation methods has been developed to reduce complexity. Multi-view video is obtained by using many cameras at different positions and its complexity increases in proportion to the number of cameras. In this paper, we proposed a fast motion estimation method for multi-view video. The proposed method predicts a search start point by using correlated candidate vectors of the current block. According to the motion size of the start search point, a search start pattern of the current block is decided adaptively. The proposed method proves to be about 2 ~ 5 times faster than existing methods while maintaining similar image quality and bitrates.
본 논문에서는 기존 NTSS 알고리즘을 다중해상도(MR : Multiple Resolution)기법을 이용하여 NTSS-3 레벨 알고리즘으로 제안하였다. 고속 블록정합 알고리즘은 패턴 방식에 따라 속도에 많은 영향을 미치는데 본 논문에서는 기존 NTSS의 패턴 방식과 다른 다중해상도 기법을 이용한 레벨에 따른 블록정합 알고리즘을 제안하였다. 블록 정합알고리즘에서 국부최소화 문제(Local minima problem)로 발생하는 화질 저하를 개선하기 위해 MC(Multiple Candidate)라는 다중후보를 이용하였다. 실험 결과 제안한 기법을 FS와 비교하면 16배의 탐색 속도론 나타내었고 기존 고속 블록 정합 알고리즘인 NTSS 방식에 비교 할 때 PSNR값에 있어서는 0.11-0.12(dB) 화질이 개선되었으며 속도 면에서도 0.1배 향상되었고 탐색점 대비 화질개선이 우수함을 나타내었다.
본 논문에서는 CCD(charge-coupled device) 영상 기반의 자동 표적 탐지 시스템(ATD System : Automatic Target Detection System)에 적합한 빠른 탐색 방법을 제안한다. 무기체계에서의 활용을 위해서는 빠른 연산이 주요한 변수인 만큼 이 논문에서는 적은 계산량으로 다양한 표적을 탐지할 수 있는 능력에 주안점을 두고 있다. 표적 훈련(train)단계에서는 구간별 수직 방향 프로젝션을 이용하여 1D의 템플릿을 구성하고 K-means clustering과 이진 트리 구조(binary tree structure)를 활용하여 실제 시험 단계에서 템플릿 정합하는 횟수를 최소화한다. 또한 Correlation-based Adaptive Predictive Search(CAPS)를 이용하여 각각의 템플릿에 적응적인 skip-width를 사용하여 탐색 속도를 높이고 클러터 제거 단계에서는 윤곽선으로부터 추출한 Fourier Descriptor계수를 비교함으로써 초기 탐지에서 타겟으로 오인된 클러터를 모양 정보에 기반해서 제거하는 방법을 사용한다.
멀티미디어 시스템이 발전함에 따라 멀티미디어 서비스 내에서 영상데이터 압축의 중요성은 점점 강조되고 있다. 그러나 영상을 압축한 비트스트림에 오류가 발생할 경우 영상을 복원할 때 심각한 왜곡이 발생하고, 이 때문에 멀티미디어 서비스에서 오류 은닉 방법은 더욱 중요한 기술로 대두되고 있다. 이러한 점을 해결하기 위해 Hsia는 1차원 경계면에서의 정합벡터를 이용하여 손상된 블록에 발생한 오류를 복구하는 오류 은닉 방법을 제안하였다. 그러나 정합벡터를 구하기 위해서 손상된 블록을 중심으로 상위와 하위에 있는 블록의 경계면에 있는 모든 픽셀에 대한 MAD (Mean Absolute Difference)값을 계산해야 하기 때문에 이 방법은 많은 연산량이 필요하다. 많은 연산량을 해결하기 위해서 본 논문에서는 계층 탐색 기반의 고속 오류 은닉 방법을 제안한다. 제안하는 방법에서는 정합벡터를 찾기 위한 확인점을 줄여 계산량을 감소시킨다. 제안한 방법을 Hsia가 제안한 방법과 비교하였을 때 화질을 유지하면서 연산량을 약 3배 줄일 수 있었다.
본 논문은 고속 및 고압축을 위한 프랙탈 영상 부호화 기법에 대해서 제안한다. 먼저, 원영상의 크기를 스케일링 방식 및 비트플레인 이용하여 1/2 및 1/4로 축소한다. 이어서, 부호화 시간의 단축을 위해 제한된 영역내에서 원영상의 1/4 크기의 도메인 블록과 가장 유사한 블록을 원영상의 1/2 크기를 가지는 레인지 영역에서 찾는다. 실험 결과, 제안된 알고리즘은 재퀸의 방식에 비해 화질은 다소 저하되었으나, 부호화 시간과 압축율은 많이 향상되었다.
최근, 멀티미디어는 인터넷의 확산과 하드웨어의 발전에 이르기까지 과거와 비교할 수 없을 만큼 형성, 제공, 그리고 공유되고 있다. 따라서 국제적으로 멀티미디어의 메타 데이터에 대한 적절한 표현을 제공하기 위해 MPEG-7의 표준이 설립되었다. 그리고 이미지 검색 중 MPEG-7을 사용한 멀티미디어의 다양한 데이터에 대한 연구가 진행되고 있다. 이미지 검색 시스템에는 meaning-based 검색과 content-based 검색이 있다. meaning-based 검색은 검색 속도가 빠른 것이 장점이지만, 이미지에 대한 기술적인 지식에 의해 기술과 정밀도가 영향을 받는다. content-based 검색은 이미지에 대한 의미와 사용자의 의도를 제대로 이해하지 못해 검색의 정확도가 감소하고 있다. 이 연구에서는 이러한 문제들을 해결하기 위해 두 가지 방법을 결합하여 검색 시스템을 설계하였다. 또한 시스템을 휴대용 장치 즉 휴대용 PDA 또는 스마트 폰으로 이미지 데이터를 검색하고 관리하기 위해 임베디드 시스템에 적용할 수 있도록 설계하였다. 이 시스템을 사용한다면, 휴대용 장치로 멀티미디어 데이터를 효율적으로 검색하고 활용할 수 있다.
본 논문에서는 서브영상(sub-image)에 MSE(mean square error)기반의 블록정합 알고리즘인 TSS (three-step search)와 FS (full search)를 복합적으로 적용함으로써 물체움직임을 고속, 정밀하게 추정 보상하고, 차 영상 기법을 통해 공간적 중복데이터를 제거한 잔여영상(residual image)을 고속 압축할 수 있는 새로운 기법을 제시하였다. 즉, 제안된 기법에서는 픽업된 영상 간의 유사성을 향상시키기 위하여 픽업된 요소영상으로부터 서브영상을 재합성한 뒤, TSS 기반의 MSE 알고리즘을 사용하여 전 물체영역을 대상으로 가능한 물체영역 만을 고속으로 찾은 다음, 그 가능한 물체영역에 정밀한 FS 탐색 알고리즘을 적용하여 물체영상의 정확한 움직임 벡터를 추정하여 보상하게 된다. 또한, 움직임이 보상된 물체영상에 차 영상(difference image) 기법을 적용하여 서브영상 간의 공간적 중복 데이터를 제거한 잔여영상을 얻게 되고 이는 MPEG-4 알고리즘을 통해 최종적으로 압축되게 된다. 실험결과, 제안된 기법은 기존방식에 비해 영상 압축률은 그대로 유지하면서 프레임 당 압축시간이 214% 향상됨을 보임으로써 제안된 기법의 실제 응용 가능성을 제시하였다.
영상 시퀀스로부터 추정된 움직임벡터분산에 관한 연구에 기초하여 본 논문에서는 고속블록정합움직임 추정을 위한 구속조건을 적용한 다이아몬드탐색(DS) 알고리즘을 제안한다. 영상 시퀀스에서의 움직임벡터가 수직 또는 수평방향으로 2개화소이내의 거리에서 탐색되어지는 점을 고려하여, DS 알고리즘은 수직 또는 수평방향의 움직임벡터의 추정을 강조함으로써 새로운 3단계 탐색알고리즘에 비하여 오차율 면에서 유사한 결과를 나타내지만 계산량을 줄일 수 있었음을 확인하였다. 또한, DFD를 구속조건으로 DS 알고리즘에 적용함으로써 움직임이 없는 안정된 블록에서의 움직임벡터의 계산에 소요되는 계산 량을 줄일 수 있을 뿐 아니라 국부 해를 예측할 가능성을 감소시킬 수 있었다. 따라서 제안된 구속조건을 적용한 DS 알고리즘은 기존은 DS 알고리즘뿐 만 아니라 4단계 탐색, 블록기반 기울기-감소 탐색에 비해 평균자승오차 또는 필요한 탐색 점의 수에서 우수한 결과를 나타냄을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.