• Title/Summary/Keyword: fast forward kinematic solution

Search Result 4, Processing Time 0.018 seconds

Kinematic Analysis of Multi Axis Shaking Table for Multi-Purpose Test of Heavy Transport Vehicle (고하중 차량의 다목적 테스트를 위한 다축 가진 테이블의 기구학 해석)

  • Jin, Jae-Hyun;Na, Hong-Cheoul;Jeon, Seung-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.823-829
    • /
    • 2012
  • An excitation table is commonly used for vibration and ride tests for parts or assemblies of automobiles, aircrafts, or other heavy systems. The authors have analyzed several kinematic properties of an excitation table that is under development for heavy transport vehicles. It consists of one table and 7 linear hydraulic actuators. The authors have performed mobility analysis, inverse kinematics, forward kinematics, and singularity analysis. Especially, we have proposed a fast forward kinematic solution considering the limited motion of the excitation table. On the assumption that the motion variables such as rotation angles and displacements are small, the forward kinematic problem is converted to the observer problem of a linear system. This provides a fast solution. Also we have verified that there are no singularity points in the working range by numerical analysis.

A Fast Forward Kinematic Analysis of Stewart Platform (스튜어트 플랫폼의 빠른 순기구학 해석)

  • Ha, Hyeon-Pyo;Han, Myeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.339-352
    • /
    • 2001
  • The inverse kinematics problem of Stewart platform is straightforward, but no closed form solution of the forward kinematic problem has been presented. Since we need the real-time forward kinematic solution in MIMO control and the motion monitoring of the platform, it is important to acquire the 6 DOF displacements of the platform from measured lengths of six cylinders in small sampling period. Newton-Raphson method a simple algorithm and good convergence, but it takes too long calculation time. So we reduce 6 nonlinear kinematic equations to 3 polynomials using Nairs method and 3 polynomials to 2 polynomials. Then Newton-Raphson method is used to solve 3 polynomials and 2 polynomials respectively. We investigate operation counts and performance of three methods which come from the equation reduction and Newton-Raphson method, and choose the best method.

Fast and Fine Control of a Visual Alignment Systems Based on the Misalignment Estimation Filter (정렬오차 추정 필터에 기반한 비전 정렬 시스템의 고속 정밀제어)

  • Jeong, Hae-Min;Hwang, Jae-Woong;Kwon, Sang-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1233-1240
    • /
    • 2010
  • In the flat panel display and semiconductor industries, the visual alignment system is considered as a core technology which determines the productivity of a manufacturing line. It consists of the vision system to extract the centroids of alignment marks and the stage control system to compensate the alignment error. In this paper, we develop a Kalman filter algorithm to estimate the alignment mark postures and propose a coarse-fine alignment control method which utilizes both original fine images and reduced coarse ones in the visual feedback. The error compensation trajectory for the distributed joint servos of the alignment stage is generated in terms of the inverse kinematic solution for the misalignment in task space. In constructing the estimation algorithm, the equation of motion for the alignment marks is given by using the forward kinematics of alignment stage. Secondly, the measurements for the alignment mark centroids are obtained from the reduced images by applying the geometric template matching. As a result, the proposed Kalman filter based coarse-fine alignment control method enables a considerable reduction of alignment time.

TRIFLE DIFFERENCE APPROACH TO LOW EARTH ORBITER PRECISION ORBIT DETERMINATION

  • Kwon, Jay-Hyoun;Grejner brzezinska, Dorota-A.;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • A precise kinematic orbit determination (P-KOD) procedure for Low Earth Orbiter(LEO) using the GPS ion-free triple differenced carrier phases is presented. Because the triple differenced observables provide only relative information, the first epoch's positions of the orbit should be held fixed. Then, both forward and backward filtering was executed to mitigate the effect of biases of the first epoch's position. p-KOD utilizes the precise GPS orbits and ground stations data from International GPS Service (IGS) so that the only unknown parameters to be solved are positions of the satellite at each epoch. Currently, the 3-D accuracy off-KOD applied to CHAMP (CHAllenging Min-isatellite Payload) shows better than 35 cm compared to the published rapid scientific orbit (RSO) solution from GFZ (GeoForschungsZentrum Potsdam). The data screening for cycle slips is a particularly challenging procedure for LEO, which moves very fast in the middle of the ionospheric layer. It was found that data screening using SNR (signal to noise ratio) generates best results based on the residual analysis using RSO. It is expected that much better accuracy are achievable with refined prescreening procedure and optimized geometry of the satellites and ground stations.