• Title/Summary/Keyword: farm wastewater

Search Result 54, Processing Time 0.029 seconds

Preliminary Studies for Efficient Treatment of Wastewater Milking Parlor in Livestock Farm (젖소 착유세정폐수의 효율적인 정화처리를 위한 기초연구)

  • Jang, Young Ho;Lee, Soo Moon;Kim, Woong Su;Kang, Jin Young
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.500-507
    • /
    • 2020
  • This study examined the wastewater at a livestock farm, and found that the dairy wastewater from the milking parlor had a lower concentration than the piggery wastewater, and that it was produced at a rate under 1.3 ㎥/day in a single farmhouse. The amount of dairy wastewater was determined based on the performance of the milking machine, the maintenance method of the milking parlor, and the amount of milk production allocated for each farmhouse, not by the area. The results confirmed that both dairy wastewater treatment processes, specifically those using Hanged Bio-Compactor (HBC) and Sequencing Batch Reactor (SBR), can fully satisfy the water quality standards of discharge. The dairy wastewater has a lower amount and concentration than piggery wastewater, meaning it is less valuable as liquid fertilizer, but it can be easily degraded using the conventional activated sludge process in a public sewage treatment plant. Therefore, discharging the dairy wastewater after individual treatment was expected to be a more reasonable method than consigning it to the centralized wastewater treatment plant. The effluent after the SBR process showed a lower degree of color than the HBC effluent, which was attributed to biological adsorption. In the case of the milking parlor in the livestock farm, the concentrations of the effluents obtained after HBC and SBR treatments both satisfied water quality standards for the discharge of public livestock wastewater treatment plants at 99% confidence intervals, and the concentrations of total nitrogen and phosphorous in untreated wastewater were even lower than the water quality standards of discharge. Therefore, we need to discuss strengthening the water quality standards to reduce environmental pollution.

Impact of Pig Slurry from WangGoong Farm Cluster on Water Quality of the Iksan Stream

  • Choi, Hong-Lim;Suresh, A.;Babu, T.;Mansyur, Mansyur
    • Journal of Animal Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.549-561
    • /
    • 2011
  • Livestock wastewater is being discharged without treatment from Hasen's pig farm cluster in WangGoong (WG) area into the Iksan Stream, eventually flowing into the ManGyung (MG) at the upstream junction. Although it is well known that before discharge, wastewater must satisfy the pig slurry discharge standards; because of ongoing remodeling, proper treatment is not being performed. According to public records, wastewater from the WG pig farm cluster is responsible for 3.6% of MG River pollution and 2.0% of the SaeManGuem (SMG) Reservoir pollution. As a result, upstream water treatment quality has become primary concern for development of the SMG project. All physicochemical constituents and pathogenic microbes, such as chemical oxygen demand ($COD_{Cr}$), biochemical oxygen demand ($BOD_5$), total suspended solids (TSS), total nitrogen (TN), total phosphorous (TP), fecal coliforms, Escherichia coli and Salmonella at the effluent of WG Plant (S-1) exceed the effluent standards. This is mainly due to insufficient wastewater treatment: the WG Plant is under renovation to increase water purification efficiency. By comparing the water quality at the S-7 junction, where the the Iksan Stream (pig farms) and the Wanggoong Stream (no pig farms) merge, it is clear that farming facilities and improper treatment can critically affect surrounding water quality. While it is clear throughout this study that the level of all physicochemical parameters and pathogenic microbes along the Stream decreased due to sedimentation, biodegradation and/or dilution. An alarming problem was discovered: the existence of pathogenic microbe count(E coli, Salmonella) in the lagoon wastewater and the stream water. Not only were high concentrations of these pathogens themselves found, but the potential existence of more serious pathogens could rise to more dangerous conditions.

Phosphorus Removal in Pilot Plant Using Biofilm Filter Process from Farm Wastewater

  • Shin, Sung-Euy;Choi, Du-Bok;Lee, Choon-Boem;Cha, Wol-Suk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.325-331
    • /
    • 2006
  • Various environmental conditions affecting total phosphorus removal from farm wastewater in a biofilm filter process were investigated using loess balls and Chromobacterium LEE-38 at a pilot plant. When Chromobacterium LEE-38 was used, the removal efficiency of total phosphorous was approximately 10- or 5-fold higher than that of Acinetobacter CHA-2-14 or Acinetobacter CHA-4-5, respectively. When a loess ball of $11{\sim}14mm$ manufactured at a $960^{\circ}C$ calcining temperature was used, the removal efficiency of total phosphorous was 90.0%. When 70% of the volume fraction was used, the maximum efficiency of total phosphorus removal was 93.1%. Notably, when the initial pH was in the range of 6.0 to 8.0, the maximum removal efficiency of total phosphorus was obtained after 30 days. When the operating temperature was in the range of 30 to $55^{\circ}C$, the maximum removal efficiencies of total phosphorus, 95.6 to 94.6%, were obtained. On the other hand, at operating temperatures below $20^{\circ}C$ or above $40^{\circ}C$, the removal efficiency of total phosphorous decreased. Among the various processes, biofilm filter process A gave the highest removal efficiency of 96.4%. Pilot tests of total phosphorus removal using farm wastewater from the biofilm filter process A were carried out for 60 days under optimal conditions. When Acinetobacter sp. Lee-11 was used, the average removal efficiency in the p-adsorption area was only 32.5%, and the removal efficiencies of chemical oxygen demand (COD) and biological oxygen demand (BOD) were 56.7 and 62.5%, respectively. On the other hand, when Chromobacterium LEE-38 was used, the average removal efficiency was 95.1%, and the removal efficiencies of COD and BOD were 91.3 and 93.2%, respectively.

Improvement of Septic Tank for Piggery Wastewater Treatment of Small Pig Farm (소규모 농가용 가축 뇨.오수 정화조 개선에 관한 연구)

  • 전병수;곽정훈;김태일;유용희;양창범;김형호;한정대
    • Journal of Animal Environmental Science
    • /
    • v.5 no.3
    • /
    • pp.175-180
    • /
    • 1999
  • This study was carried out to improve septic tank for piggery wastewater treatment of small pig farm. Septic tank were consisted of screen tank, aeration tank with two steps, settling tank, and filtering tank. Aeration tanks were filled with ALC of ø4~5cm. All operation steps were performed by timer from influent to effluent. Septic tank decreased BOD by 94.7% from 4,298.3mg/$\ell$ to 226.3mg/$\ell$ and also decreased SS by 92.4%, from 2,231.3mg/$\ell$ to 161.0mg/$\ell$, respectively.

Development of Treatment Facilities for Swinery Wastewater Using Steel-making Slag (제강슬래그를 이용한 돈사폐수 처리 시설 개발)

  • 이건주;이종은;김순영;김태희;백승철
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.127-133
    • /
    • 2000
  • The incomplete treatment of the swinery wastewater is one of the major factors of the river contamination resulting from an eutrophication. Even through many treatments were considered to reduce the contamination of the river by the swinery wastewater, the most effective treatment was not developed yet. Therefore, this project was focused on the development of the treatment that was a low cost and a high efficiency using a steel-making slag. The swinery wastewater was passed through a U-type tube packing the slag in the laboratory. And the swinery wastewater was cleaned effectively in the laboratory experiment. Based on these laboratory results, the treatment facility in a stock farm was constructed to confirm the effect of slag on the first-treated swinery wastewater. After the treatment of the first-treated swinery wastewater through the slag, the water quality of the river was improved and the biodiversity was increased.

  • PDF

Distribution of Antibiotic-Resistant Bacteria in the Livestock Farm Environments

  • Kim, Youngji;Seo, Kun-Ho;Kim, Binn;Chon, Jung-Whan;Bae, Dongryeoul;Yim, Jin-Hyeok;Kim, Tae-Jin;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • The surroundings of livestock farms, including dairy farms, are known to be a major source of development and transmission of antibiotic-resistant bacteria. To control antibioticresistant bacteria in the livestock breeding environment, farms have installed livestock wastewater treatment facilities to treat wastewater before discharging the final effluent in nearby rivers or streams. These facilities have been known to serve as hotspots for inter-bacterial antibiotic-resistance gene transfer and extensively antibiotic-resistant bacteria, owing to the accumulation of various antibiotic-resistant bacteria from the livestock breeding environment. This review discusses antibiotic usage in livestock farming, including dairy farms, livestock wastewater treatment plants as hotspots for antibiotic resistant bacteria, and nonenteric gram-negative bacteria from wastewater treatment plants, and previous findings in literature.

Treatment of milking parlor wastewater containing tetracycline by magnetic activated sludge and contact oxidation process

  • Gaowa, Gaowa;Sakai, Yasuzo;Xie, Xiaonan;Saha, Mihir Lal;Ihara, Ikko
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.32-36
    • /
    • 2021
  • Milking parlor wastewater contains not only high concentrations of organic compounds, but often animal antibiotics. To discharge the antibiotics to public water area cause problem of antibiotics resistant bacteria. Magnetic separation was applied into improvement of milking parlor wastewater treatment process. A new process, composed of a magnetic activated sludge (MAS) process and a contact oxidation (CO) process, was proposed in this study. This process was evaluated by the simulated milking parlor wastewater (4500 mg/L CODCr and 10 mg/L tetracycline) using a bench scale experimental setup. As a result, the process was able to removed 97% CODCr as well as 94% tetracycline. The MLVSS (mixed liquor volatile suspended solids) concentration of MAS was maintained at 12000 mg/L without excess sludge drawing. This process was considered to be useful as treatment process for milking parlor wastewater in which waste-milk including antibiotics is often discharged.

A study on The Effect of Antibiotics Usage too The Efficiency of Biological Piggery Wastewater Treatment (축산물에 사용되는 항생제가 축산폐수의 처리효율에 미치는 영향)

  • Cho, Mi Kyeong;Tran, Hung Thuan;Kim, Dae Hee;Jia, Yu Hong;Oh, Se Jin;Ann, Dae Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.1
    • /
    • pp.123-133
    • /
    • 2007
  • The presence of antibiotics in the wastewater from livestock farm due to its over-application should be concerned because they could change microbial ecology, increase the proliferation of antibiotic resistant pathogens, provoke toxic effect on aquatic species. In addition, these antibiotics can cause negative effect on the performance of biological wastewater treatment due to its antibacterial properties. In this study, our aim is to evaluate the effect of some common used antibiotic in Korea piggery farm such as oxytetracycline (OTC) to nitrification efficiency as well as organic compounds removal rate in biological system for treating piggery wastwater. The experiment was conducted in aeration batch reactor and lab-scale $A_2/O$(Anoxic-Anoxic-Oxic) system. From this study, it would be suggested that the piggery wastewater characterization should be examined in order to assess the fraction of common used antibiotics. The alternative treatment processes for piggery wastewater having high-strength antibiotics might be suggested in the future work.

  • PDF

Growth of Spirulina platensis in Effluents from Wastewater Treatment Plant of Pig Farm

  • Hong, Seok-San
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.19-23
    • /
    • 1993
  • Spirulina platensis NIES 39 was grown in effluents from a wastewater treatment plant utilizing activated sludge process at a pig farm to reduce pollutants and to produce feed resources. The addition of 2 g/l NaCl was required for the growth of S. platensis in the effluents with about 100 mg/l ammonia nitrogen concentration. The growth was stimulated by the addition of 2 g/l sodium bicarbonate and 4 mg/l ferrous sulfate. The microorganism grew well at pH 8~11, and the optimum pH for the growth was 10. The algal concentration of 1.1 g/l was attained after 8 days of growth at the optimum condition with the removal of 95% ammonia nitrogen and 34% phosphorus.

  • PDF

Improvement in the Operating Conditions of the Rotary Mixing Compost Plants (로터리 교반식 퇴비화 시설의 운전 조건 개선)

  • Kim, Eun-Kyoung;Lee, Taek-Soon;Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.3
    • /
    • pp.355-361
    • /
    • 1996
  • The Purpose of this study was to investigate the effect of the Change in the operating conditions on rotary turning compost plants. The major parameters investigated were moisture content and mixing of the sawdust and pig farm wastewater. Pig farm scale composting plants with mixing rotary were used in this study. Wastes used for the study were sawdust, pig manure, urine and wastewater. When the moisture content was 75%, the compost product obtained from the plants had better physical characteristics than that obtained from the plants with moisture contents of 70%, 80% and 85%.(two a day mixing). When the turning was twice a day, the compost product obtained from the plants had better characteristics than that obtained from non-mixing.(moisture content 75%). C/N ratio, pH value and coliform bacterial population were stable in the compost.

  • PDF