• Title/Summary/Keyword: far-red light

Search Result 95, Processing Time 0.288 seconds

A Study on Function of Natural Dyeing with Cotton Fabrics Using Jeju scoria (제주 송이를 이용한 천연염색 면직물의 기능성 연구)

  • Im, Eun-Suk;Lee, Hye-Sun
    • Textile Coloration and Finishing
    • /
    • v.23 no.3
    • /
    • pp.179-186
    • /
    • 2011
  • For the application of Jeju scoria scattered around the island as a natural dye, cotton fabrics were dyed with the dye and their properties were measured including dyeability, colorfastness, antibacterial activity, deodorization efficiency, ultraviolet protection, and far-infrared emission. The dyed cotton fabrics were in yellowish red and optimal dyeing conditions were obtained with a colorant concentration of 25%(o.w.b) at a temperature of $80^{\circ}C$ for the dyeing time of 120 minutes. The ratings of colorfastness to light, rubbing, perspiration, and washing were 8, 5, 5, and 4~5 respectively. After 15 wash cycles, colorfastness remained as much as 4~5 rating. The cotton fabric dyed with Jeju scoria demonstrated excellent antimicrobial activity and deodorization efficiency of 99.9% and 93.9% respectively. Ultraviolet protection factor was 50+. Far-infrared emission rate and far-infrared emission intensity were 90% and 362(W/$m^2{\cdot}{\mu}m$) respectively. The Jeju scoria can be introduced as a new colorant for the natural dyeing of cotton.

Analysis of Spectral Light Intensity of High Pressure Sodium and Metal Halide Lamps for Plant Growth (식물생장용 고압나트륨램프와 메탈할라이드램프의 분광 광강도 분석)

  • Lee, Hye-In;Kim, Yong-Hyeon;Kim, Dong-Eok
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.413-419
    • /
    • 2010
  • Plant growth was greatly affected by the spectral distribution and light intensity of artificial lighting sources. In this study, the spectral characteristics of high power sodium (HPS) lamps and metal halide (MH) lamps produced by three different manufacturers were measured. Even though the spectral distribution of HPS lamps with lamp wattage of 250 W and 400 W was very similar, but the spectral light intensity by the manufacturers was different. Difference in the spectral light intensity of MH lamps by the manufacturers was increased with the increasing lamps wattage. Light intensity at the region of blue (B), green (G), red (R) and far-red (FR) light of HPS and MH lamps was also analyzed. HPS lamps showed the light intensity in order of R, FR, B and G light. The ratio of G, B, R and FR to photosynthetic photon flux (PPF) of HPS lamps with the lamp wattage of 250 W was 3.0-3.2%, 5.5-5.9%, 17.3-19.2% and 6.5-7.8%, respectively. For MH lamps, it showed the light intensity in order of R, FR, B, and G. The ratio of B, G, R, and FR to PPF of MH lamps with 250 W was 14.0-15.5%, 22.6-27.5%, 7.5-9.5% and 2.7-4.2%, respectively. HPS and MH lamps with 400 W had a relatively smaller ratio of R and FR to PPF than those with 250 W. HPS lamps showed that the ratio of light intensity of B and FR to R was 0.15-0.28 and 0.36-0.4, respectively. For MH lamps, the ratio of light intensity of B and FR to R was 1.26-2.72 and 0.27-0.56, respectively. From these results, it was concluded that the portion of blue light of MH lamps was higher than those of HPS lamps.

Far IR Emission and Thermal Properties of Ceramics Coated Nylon Fabrics (세라믹스 처리된 나일론 직물의 원적외선 방사성능과 보온효과)

  • Yeo, Suk-Yeong;Lee, Dong-Hwa;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.4
    • /
    • pp.515-524
    • /
    • 1998
  • The purpose of this study was to evaluate the thermal properties of ceramics coated nylon fabrics by determining far infra-red emissive properties, heat storage/release and thermal insulation. Far IR emissivity and emissive power were measured for 7~ 140n at 50'C . Three types of ceramics such as cordierite with $\alpha$-alumina, a-alumina with titanium oxide and a-alumina were chosen as specimens. Cordierite with $\alpha$-alumina was chosen to treat on the fabrics due to the good emissive properties on the fabrics. Add-ons and contents of ceramics were analyzed for ceramics and/or polyurethane coated fabrics. For the physical properties, thickness and air permeability were measured. Results showed a difference in the emissive property between ceramics themselves and ceramics coated fabrics. In the ambient temperature, there was no diffenence in emissivity among the different ceramics contents. Thermography showed that when the fabric was heated with the light, surface mean temperatures of fabrics were increased as the contents of ceramics increased, and the heat storage property was confirmed. In case of same thickness and air permeability, the thermal insulation value increased as the contents of ceramics increased because of increasing heat storage and Far IR reflectivity. So there were absorption and heat storage of ceramics for Far IR from human and reflection to human between ceramics coated fabrics and human.

  • PDF

Effects of Light Quality Using LEDs on Expression Patterns in Brassica rapa Seedlings (LED 광원의 다양한 광질이 배추 유묘의 유전자 발현에 미치는 영향)

  • Kim, Jin A;Lee, Yeon-Hee;Hong, Joon Ki;Hong, Sung-Chang;Lee, Soo In;Choi, Su Gil;Moon, Yi-Seul;Koo, Bon-Sung
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.607-616
    • /
    • 2013
  • Light with two faces, beneficial and harmful effects is an important signal for every living cell. Optimal adaptation to light environment enhances the fitness of an organism and survival in nature. Understandings of light quality and plant growth provide with the economical guides for artificial light sources like LEDs. Compared with those under white light, the 1 week seedlings of Chinese cabbage (Brassica rapa) under monochromic red and blue light showed normal development and growth. In contrast to extremely long and etiolated hypocotyls of the seedlings under dark, those under far-red etiolated were extremely short. Based on the microarray analysis, blue light induced the vigorous development and growth and two fold changes of transcripts than red light condition. To have insight of gene products under different light qualities conditions, GO term enrichments were calculated and each gene according to their GO terms were categorized. The blue and red lights affected the expressions of genes related to biological process. Especially, the genes related to metabolic process and developmental process and plastid and chloroplast in the cellular component category were induced under blue light. This study provided the molecular biological evidence for various light qualities on the growing process of B. rapa.

Increase in the Chlorophyll Contents by Over-expression of GmNAP1 Gene in Arabidopsis Plant (애기장대에서 GmNAP1의 과발현으로 인한 엽록소 함량 증가)

  • Park, Phun-Bum;Ahn, Chul-Hyun
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1563-1568
    • /
    • 2010
  • In the course of a research concerning the molecular mechanism of hypocotyl elongation that occurs during soybean seedling growth in darkness, we have generated a number of ESTs from a cDNA library prepared from the hypocotyls of dark-grown soybean seedlings. Comparison of the ESTs assigned a cDNA clone as a putative plastidic ATP-binding-cassette (ABC) protein homologue. The soybean GmNAP1 protein contains an N-terminal transit peptide which targets it into the chloroplast. The transcription level of the GmNAP1 gene was investigated under continuous red light, continuous far-red light, and complete darkness. The main function of this NAP1 protein is the transport of protoporphyrin IX which is the precursor of chlorophyll from the cytoplasm to the chloroplast. The GmNAP1 gene was transferred into the Arabidopsis under the CaMV 35S promoter. The chlorophyll level of this transgenic Arabidopsis plant was much higher than the chlorophyll level of the wild type Arabidopsis plant.

Dyeability and Functionality of Silk Fabrics Dyed with Jeju scoria (제주 송이를 이용한 견직물의 염색성 및 기능성)

  • Im, Eun-Suk;Lee, Hye-Sun;Han, Chung-Hun
    • Textile Coloration and Finishing
    • /
    • v.23 no.3
    • /
    • pp.187-194
    • /
    • 2011
  • This study used Jeju scoria to dye cotton fabric and measured its dyeability, colorfastness, antibacterial activity, deodorization efficiency, ultraviolet protection, and far-infrared emission. The cotton fabric was colored to yellowish red and optimal dyeing can be achieved at a temperature of $80^{\circ}C$ for a dyeing time of 120 minutes with a colorant concentration of 25%(o.w.b). The colorfastness to light, rubbing, perspiration, and washing was 8, 5, 5, and 4~5 ratings respectively, where the wash colorfastness remained after 15 wash cycles. The cotton fabric dyed with Jeju scoria demonstrated excellent antimicrobial activity to Staphylococcus aureus and high deodorization efficiency. Ultraviolet protection factor was as high as 50+. The Jeju scoria can be used as a new colorant for the natural dyeing of silk.

Formation and Size Control of Polydiacetylene Sensor Liposome Using Hydrodynamic Focusing (유체집속효과를 이용한 폴리다이아세틸렌 센서 생성 및 크기 제어)

  • Kim, Gang-June;Song, Si-Mon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2688-2691
    • /
    • 2008
  • This study addresses a microfluidic method to uniformly form diacetylene (DA) liposomes and control their size. DA liposomes are biochemical sensor materials with a unique property such that when they are polymerized to polydiacetylene (PDA) they exhibit non-fluorescent blue to fluorescent red phase transition upon chemical or thermal stress. The liposome size and distribution are important because they significantly affect the phase transition. So far, DA Liposomes, have been prepared by mixing of bulk phases leading to heterogeneous, polydisperse distribution in size. Therefore, additional post-processes are required such as sonication or membrane extrusion to obtain an appropriate size of liposomes. Here, we report a novel strategy using a microfluidic chip and hydrodynamic focusing to form DA liposomes and control their size. Preliminary results obtained by scanning electron microscope (SEM) and dynamic light scattering (DLS) show that the microfluidic strategy generates more monodispersed liposomes than a bulk method.

  • PDF

Red Spot of Broad Bean (Vicia faba) Caused by Botrytis fabae (Botrytis fabae에 의한 잠두 붉은점무늬병)

  • 권진혁;강수웅;김정수;박창석
    • Research in Plant Disease
    • /
    • v.8 no.1
    • /
    • pp.63-65
    • /
    • 2002
  • Red spot disease was found on broad bean (Vicia faba) in several farmer's field located in Changseon-myon, Namhae-gun, Gyeongnam provice in Korea. The typical symptoms of the disease were appeared on leaves and stems. The infection rates of the disease in the surveyed area were ranged from 16.4 to 84.6%. Lesions on the leaves were round with 1~4.2 mm in size and on the stem were narrow long fusiform with 1~15 mm in size. Conidia and conidiaphores were not readily farmed on PDA, however, a few conidia were formed on PDA added in extracts of 10 g of broad bean leaves. Conidia were light yellow green in color, globose or obovoid in shape, and 10~24$\times$8~22 $\mu$m in size. Conidiophores were cylindrical in shape, light brown in color and 3.6~12.8 $\mu$m in wide. Sclerotia of the fungus were readily formed in artificial media such as PDA. They were ellipsoid to irregular in shape, 1.2~11.8 mm in size and dark in color, The optimum temperature far growth of the fungus was about 2$0^{\circ}C$. On the basis of mycological characteristics, the fungus was identified as Botrytis fabae. This is the first report on the red spot of broad bean caused by Botrytis fabae in Korea.

Scattering characteristics of metal and dielectric optical nano-antennas

  • Ee, Ho-Seok;Lee, Eun-Khwang;Song, Jung-Hwan;Kim, Jinhyung;Seo, Min-Kyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.76.1-76.1
    • /
    • 2015
  • Optical resonances of metallic or dielectric nanoantennas enable to effectively convert free-propagating electromagnetic waves to localized electromagnetic fields and vice versa. Plasmonic resonances of metal nanoantennas extremely modify the local density of optical states beyond the optical diffraction limit and thus facilitate highly-efficient light-emitting, nonlinear signal conversion, photovoltaics, and optical trapping. The leaky-mode resonances, or termed Mie resonances, allow dielectric nanoantennas to have a compact size even less than the wavelength scale. The dielectric nanoantennas exhibiting low optical losses and supporting both electric and magnetic resonances provide an alternative to their metallic counterparts. To extend the utility of metal and dielectric nanoantennas in further applications, e.g. metasurfaces and metamaterials, it is required to understand and engineer their scattering characteristics. At first, we characterize resonant plasmonic antenna radiations of a single-crystalline Ag nanowire over a wide spectral range from visible to near infrared regions. Dark-field optical microscope and direct far-field scanning measurements successfully identify the FP resonances and mode matching conditions of the antenna radiation, and reveal the mutual relation between the SPP dispersion and the far-field antenna radiation. Secondly, we perform a systematical study on resonant scattering properties of high-refractive-index dielectric nanoantennas. In this research, we examined Si nanoblock and electron-beam induced deposition (EBID) carbonaceous nanorod structures. Scattering spectra of the transverse-electric (TE) and transverse-magnetic (TM) leaky-mode resonances are measured by dark-field microscope spectroscopy. The leaky-mode resonances result a large scattering cross section approaching the theoretical single-channel scattering limit, and their wide tuning ranges enable vivid structural color generation over the full visible spectrum range from blue to green, yellow, and red. In particular, the lowest-order TM01 mode overcomes the diffraction limit. The finite-difference time-domain method and modal dispersion model successfully reproduce the experimental results.

  • PDF

Effect of Light Quality during $GA_3$ Imbibition and Germination Temperature on Pepper Seed Germinability (파종 전 $GA_3$와 광질 처리, 발아온도에 따른 고추종자의 발아율)

  • 강진호;심영도;강신윤;조영욱;박아정
    • Korean Journal of Plant Resources
    • /
    • v.12 no.2
    • /
    • pp.95-101
    • /
    • 1999
  • Higher and uniform germination should be necessary because many commercial pepper (Capsicum annum L.) seedlings were nowadays sold to farmer. The experiment was carried out to determine the effect of its cultivars (Daemyung; Wanggochu), GA$_3$ (concentration; period), light quality (red; far-red; blue; dark) during GA$_3$imbibition, and germination temperature (GT: 25 or 15$^{\circ}C$ constant; 25/15$^{\circ}C$ alternating) on the rate of germination done under incandescent lamps until 9 days after sowing. Final seed germination was not different between GA$_3$0 to 1.0 mM concentrations but the elapsed days to 50% germination $(T_{50})$ were more reduced by GA$_3$ treatment than water imbibition. Under $25^{\circ}C$ constant germination temperature, earlier germination was enhanced by GA$_3$treatment showing the lowest rate at darkness, although the final germination rates of water imbibition and GA$_3$ treatments were same. The final germination rates of alternating and 25 $^{\circ}C$ constant GT in cv. Daemyng was also equal, while the germination rates of $25^{\circ}C$ and 15$^{\circ}C$ constant GT were the highest and the lowest regardless of cultivars. There was no difference between light quality treatments impelled during GA$_3$ imbibition when light treated seeds were germinated at alternating and $25^{\circ}C$ constant GT. At 15$^{\circ}C$ constant GT, however, red light or dark treatment during GA$_3$imbibition increased the germination rate since 5 days after sowing.

  • PDF