• Title/Summary/Keyword: far field

Search Result 1,917, Processing Time 0.026 seconds

The Question of 'State and Art' with regard to Soviet Socialist Realism (소련 사회주의 리얼리즘에 관하여: '국민과 예술'의 문제)

  • Alexander, Morozov
    • The Journal of Art Theory & Practice
    • /
    • no.7
    • /
    • pp.125-163
    • /
    • 2009
  • The artworks of Socialist Realism of the former Soviet Union, with the beginning of the 21st century, are gaining a new attention from art collectors. One reason for this might consist in the fact that relevant art pieces exemplify the ways in which they visualize ideas on the basis of their high-profile art tradition and also in which they integrate their utopian ideals with mysticism. These aspects of the Soviet art goes far beyond the wide-spread assumption that their art, as a means of propaganda, principally represents a political allegiance to the system. With Stalin coming into power in the 1930s, the artistic trend of Socialist Realism obtained a nationwide sympathy and support from people, giving birth to a new art which essentially corresponded to the demands of the political power. An official art current of the USSR over the period from the 1930s to 1950s, Socialist Realism was in tandem with the Communist commitment to the party and popularity, symbolizing a loyalty to the cause. It was thus characterized by plainness and lucidity so that ordinary people could gain easy access to art. Its salient feature, over an entire range of art, was an optimistic pursuit of a utopian dream. Therefore, it tallied with the popular sentiment for a Communist paradise, giving form to their beliefs in human agency working at the materialist world and also to such abstract concepts as force, fitness, and beauty by adding even mythical ideals. Its main subject matter includes harvest feasts of collective farms, imaginary socialist cities, grand marches of heroic laborers and in this way it served as a propaganda for a sacred utopia of socialist totalitarianism. On the other end of the spectrum, however, rose the second camp of art, which put an emphasis on bona-fide artistic activities of plastic art and on an artist's personal expression and freedom, as opposed to the surface optimism of Socialist Realism. Central to the Russian Avant Garde art, which prized the above-mentioned values, were Malevich's Geometric Abstraction and A. Rodchenko's Constructivism. Furthermore, in the transitional era of the late 20th century and the 21st century it was recognized that film art or electronic media art, rather than traditional genre of paintings, would function as a more efficient way of propaganda. These new genres were made possible by ridiculing the stereotypes of the Russian lifestyle and also by ignoring ethical or professional dimensions of artworks. That is, they reinvented themselves into a sort of field art, seemingly degrading the quality of artworks and transforming them into artifacts or simulacres in the very sense of post-modernism. The advent of the new era brought about the formation and occupation of pop culture of the younger generations, calling into question the idea of art as the class-determined. It also increased the attention to field art, which extensively found way to modern art centers, galleries, and exhibition projects. It can be stated that this was a natural outcome of human nature.

  • PDF

Analysis of Changes in Land Use of Hills Using Time Series Data (시계열 자료를 활용한 야산의 토지이용 변화 분석)

  • Park, Jong-Chul;Kim, Man-Kyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.3
    • /
    • pp.102-118
    • /
    • 2010
  • Since hills are transitional area between plains and mountains, they are always under pressure to be developed. In the past, hills were recognized as areas that can be developed easily, but in the present they should be considered and preserved as forest resources. So far, little research has been done regarding cultivation status and transitional procedure. This study attempts to quantify changes in land use using time series data. To do so, this study has created a land use map for 1915, 1972, 2002 and 2006, and conducted a spatial analysis based on GIS. The research areas(the total size of the hills are 3,034 ha) are located in Chungcheongnam-do of South Korea. The size of the forest area of the hills in the research zone has decreased by 50% during the period of 1915 to 2006. The size of the reduced forest area after 2002 is similar to size of the reduced area that had taken place for the last 30 years before 2002. The reduction in forest area in the research area has led to increases in paddy field, upland field, artificial structures, and bare land. From 1915 to the late 1980s, hill development had been related to the primary industry and after the late 1980s, it has associated with the development of the secondary industry including industrial complex.

Stimulation of Blood Flow Needs a Parallel Magnetic Field and Psycho-physics acupuncture

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.105-112
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, fur examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-l4}$m and then the converging $\pi$-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion, because of the $\pi$-rays' hindrances, near the nucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. Any magnet absorbs n-rays to S pole and sends out the $\pi$-rays from N pole. Proton are constructed with the closed n-rays quantum-mechanically. The crystallizing n-bonding makes two $\pi$-far infrared rays of one wave length between two protons if two $\pi$-rays are supplied to each proton. It is easily done for a $\pi$-ray to be absorbed to a proton if there is a parallel magnetic flow to the blood flow because a $\pi$-ray advances axially under a magnetic field and a proton looks like a sphere. A axially advancing disk-like $\pi$-ray can meet more easily the coming spheres than from the other directions. The blood crystals stimulate the autonomous nerves on the blood vessels during the flow by their mechanical sliding collisions. SM n-ray meridian therapy and SMACN $\pi$-ray meridian therapy show the stimulation of blood flow and also combinational experiment between SM $\pi$-ray meridian therapy and n-ray psycho-physics acupuncture shows more clearly that magnet is forcing to make $\pi$-rays absorbed to the nucleons.s.ons.

  • PDF

Present Status and Prospect of Weed Control in Korea (우리나라의 잡초방제(雜草防除) 현황(現況)과 전망(展望))

  • Ahn, Soo-Bong
    • Korean Journal of Weed Science
    • /
    • v.1 no.1
    • /
    • pp.5-14
    • /
    • 1981
  • Weed is one of the problems in the crop land as well as in uncultivated land, raising the farm management costs. Therefore, the weed control is essential for effective agricultural management. The cost for weed control in Korea occupies on the average 27.6% of the total labor cost required. Agricultural policies since 1960 were transferring from yield increase due to land productivities to increase of income due to labor productivities. Therefore, the weed control by hand is also changed to weed control by chemicals. The weed control by chemicals has also brought about some side-effects and needs better, improved weed control methods. The present weed control situation and related problems were studied to present new approaches for agricultural development in the future. There were 458 species of weeds in 82 families which were growing in the crop land. The weeds to control, however, are 12 in paddy field and 9 in upland. So far weeds in paddy field are well under control, while weeds in upland are poorly controlled due to change in chemical efficiency and chemical damage in the upland. The administration, research and extension work for the efficient use of agricultural chemicals have been done by various institutions, such as Office of Rural Development, Office of Forestry, and chemical companies. The courses for agricultural chemicals were offered in the agricultural colleges. However, the efficiency of chemicals could not be maximized due to the poor relationships among related institutes. The newly established Agricultural Chemical Research Center at the Office of Rural Development and the Korean Weed Science Association are expected to contribute toward improving weed control in Korea. The Korean agriculture in the future will eventually be mechanized and the varieties resistant to high nitrogen application and to high plant density will be required for high yields. The rice will be transplanted earlier and the whole growing period will be extended. The application of organic matter will be increased for increasing soil fertility, and the use of agricultural chemicals will be continued. Under such a condition, the studies on the weed occurrence and its integrated control measures will be needed. Also weed controls in the newly exclaimed land, crop varieties, horticultural varieties, forage crops, and forests are also needed to study. Basic and practical researches for the weed control to improve the labor productivity will be also needed. In order to meet the all requirements for efficient weed control, weed control systems including all the academics, research and extension workers, administratives, farmers and companies should be established. Also securing researchers and education of personnels are pre-required and research funds for the chemical studies should be provided efficiently and timely.

  • PDF

Simulation and Evaluation of ECT Signals From MRPC Probe in Combo Calibration Standard Tube Using Electromagnetic Numerical Analysis (전자기 수치 해석을 이용한 Combo 표준 보정 시험편의 MRPC Probe 와전류 신호 모사 및 평가)

  • Yoo, Joo-Young;Song, Sung-Jin;Jung, Hee-Jun;Kong, Young-Bae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.90-98
    • /
    • 2006
  • Signals captured from a Combo calibration standard tube paly a crucial role in the evaluation of motorized rotating pancake coil (MRPC) probe signals from steam generator (SG) tubes in nuclear power plants (NPPs). Therefore, the Combo tube signals should be consistent and accurate. However, MRPC probe signals are very easily affected by various factors around the tubes so that they can be distorted in their amplitudes and phase angles which are the values specifically used in the evaluation. To overcome this problem, in this study, we explored possibility of simulation to be used as a practical calibration tool far the evaluation of real field signals. For this purpose, we investigated the characteristics of a MRPC probe and a Combo tube. And then using commercial software (VIC-3D) we simulated a set of calibration signals and compared to the experimental signals. From this comparison, we verified the accuracy of the simulated signals. Finally, we evaluated two defects using the simulated Combo tube signals, and the results were compared with those obtained using the actual field calibration signals.

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF

Study on Application of Filling Material for Reinforcement of Soil Murals in Buddhist Temple (토벽화 균열부 보강에 사용되는 충전제 적용 연구)

  • Lee, Kyeong Min;Lee, Hwa Soo;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.29 no.4
    • /
    • pp.395-406
    • /
    • 2013
  • The conservation of damaged object should be restored by the similar material with the original and they have to reversibility as possible as. The characteristics of Buddhist mural paintings composed of clay are with soft material. So far, there have been a number of researches done on filling material that reinforces cracks and exfoliation of mural painting. Based on the application of traditional materials, it was found that they are appropriate to various applications. However, only based on those research results, there are some constraints to the application in the field. In addition, there has been only a few researches done on physical characteristics of filling materials. A major issue is that there is not any standard established on various mixing ratio, which is required for treatment of mural painting. This study was carried out to understand the physical characteristics of filling materials on clay mural painting. The 1st test was conducted to analyze test specimen in twelve different conditions by varying soil mixing ratio and organic medium. The 2nd test was conducted to manufacture filling materials appropriate to the mural painting, based on the result of stable condition from the 1st test, and which was applied to treatment in field.

Analysis of Sedimentation Around Jetties in the West Coast: based on field measurement and hydrodynamic modeling (서해연안 돌제구조물 주위의 침퇴적 해석: 실측 및 수동역학 모델에 의한 초기추정)

  • Suh, Seung-Won;Yoo, Gyeong-Sun;Lee, Hwa-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.345-354
    • /
    • 2007
  • A sedimentation analysis has been attempted to figure out sedimentation environment due to construction of coastal jetties, such as fish harbor dike, flow guided dike and jetty in shallow Kusipo area, in which tidal range marks up to 6.6 meters in spring tide. As an initial approach of understanding field measurement were done on several stations along reference lines with total station and photo analysis taken by remote controlled small air craft far one and half years. Also numerical tests were done by 2-D ADCIRC model considering dry-wet treatment to evaluate flow and bottom shear stress variations. According to direct measurement, deposition seems to be dominant on Kusipo beach. Model results show bottom shear stress lessens to $0.10{\sim}0.15\;N/m^2$ on most shadow zone of jetties and the inner zone is suffering sedimentation as a result of dike construction. However this is the first approach with limited analysis, thus it should be dealt further considering physical characteristics of bottom sediments in a complete sediment model on upcoming study.

Size Distribution and Temperature Dependence of Magnetic Anisotropy Constant in Ferrite Nanoparticles

  • Yoon, Sunghyun
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2012.11a
    • /
    • pp.104-105
    • /
    • 2012
  • The temperature dependence of the effective magnetic anisotropy constant K(T) of ferrite nanoparticles is obtained based on the measurements of SQUID magnetometry. For this end, a very simple but intuitive and direct method for determining the temperature dependence of anisotropy constant K(T) in nanoparticles is introduced in this study. The anisotropy constant at a given temperature is determined by associating the particle size distribution f(r) with the anisotropy energy barrier distribution $f_A(T)$. In order to estimate the particle size distribution f(r), the first quadrant part of the hysteresis loop is fitted to the classical Langevin function weight-averaged with the log?normal distribution, slightly modified from the original Chantrell's distribution function. In order to get an anisotropy energy barrier distribution $f_A(T)$, the temperature dependence of magnetization decay $M_{TD}$ of the sample is measured. For this measurement, the sample is cooled from room temperature to 5 K in a magnetic field of 100 G. Then the applied field is turned off and the remanent magnetization is measured on stepwise increasing the temperature. And the energy barrier distribution $f_A(T)$ is obtained by differentiating the magnetization decay curve at any temperature. It decreases with increasing temperature and finally vanishes when all the particles in the sample are unblocked. As a next step, a relation between r and $T_B$ is determined from the particle size distribution f(r) and the anisotropy energy barrier distribution $f_A(T)$. Under the simple assumption that the superparamagnetic fraction of cumulative area in particle size distribution at a temperature is equal to the fraction of anisotropy energy barrier overcome at that temperature in the anisotropy energy barrier distribution, we can get a relation between r and $T_B$, from which the temperature dependence of the magnetic anisotropy constant was determined, as is represented in the inset of Fig. 1. Substituting the values of r and $T_B$ into the $N{\acute{e}}el$-Arrhenius equation with the attempt time fixed to $10^{-9}s$ and measuring time being 100 s which is suitable for conventional magnetic measurement, the anisotropy constant K(T) is estimated as a function of temperature (Fig. 1). As an example, the resultant effective magnetic anisotropy constant K(T) of manganese ferrite decreases with increasing temperature from $8.5{\times}10^4J/m^3$ at 5 K to $0.35{\times}10^4J/m^3$ at 125 K. The reported value for K in the literatures is $0.25{\times}10^4J/m^3$. The anisotropy constant at low temperature region is far more than one order of magnitude larger than that at 125 K, indicative of the effects of inter?particle interaction, which is more pronounced for smaller particles.

  • PDF

Research on Ginseng Production During the Past 20 years (인삼재배 분야의 과거 20년 연구)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.20 no.4
    • /
    • pp.472-500
    • /
    • 1996
  • Researches on mineral nutrition, physiology and phyrsiological diseases, . cultivaction methods. brceding. pest control quality management and extension during 1976-1995 in Korea were reviewed Review in brceding and pest control was restricted to the researches directely related to cultivaction. Mineral nulrient up take. partion and varicos factors such as top dreasing. Light intersity etc. and interrelationship between minerals were investigated. Top dressing was not effective due to low minera1 requorement Physiological characteristics on tempelature light and water were well elucidated and applied to assess traditional cultivation method and its inovation. Photosyrnthetic pigments. light harvest proteins and activity of related enzymes were studied. In nitrogen metabolism arginine, praline, ammonium, threonine appeared to have important role in re growth of shoot Saponin metabolism was studied in relation to growth and new ginsenosides were found but physiological role of saponin was not clearly elucidated yet Endogenous growth regulators were reported and various erogenous growth regulators were studied for growth stimulation. short stem and seed pruning etc. Various physiological diseases were investigated for cause and control measures were established. Water culture was little studied Forest culture was studied but not retched the recommendable stage Drip irrigation straw mulching. seasonal shading and soil preparation method including soil fertility adjustment were established for practical application. Shading materials completely changed to polyethylene net and materials of polymers The research on ginseng cultivation in paddy field opened the way to establish the permanent ginseng cultivation plantation Ginseng harvester and seeder were developed in the late 1950s. Transplanted and many other machines were developed in the early 1990s. In ginseng breeding only pure line selection was of practical significance several verities were at the stage of seed propagation at ginseng plantations. Mutation breeding (${\gamma}$-ray. X-ray chemicals) was not successful. The research on plantlet formation through tissue culture was a little progressed but still far behind to vegetative propagation. Disease control research was concentrated in the isolation and identification of pathogans. their ecological charactelistics and biological control and soil humigation. Potato root rot nematodes was found and control method was established. Insect and small animal control research was greatly progresses in identification, ecological investigation, and ecological and physical control. Weed control was less important due to the development of mulching method of ridge and ditch. Quality factors of raw ginseng in relation to red ginseng process were extensively studied. Traditional quality measures were elucidated in accordance with modern analytical chemistry resulting in the importance of peptides in the centrat part rather than ginsenosides For large root production growth promoting rootzone micrcorganisms (PGPRM) were isolated and active compounds were identified. Field test on PGPRM was on going. Varictus methods formality improvement through cultivation were developed. Management research of ginseng production was rare Extension was active throuch official and private organizations and through workshop for the extension specialists, and direct lectures to grower's. Extension services made the researcher to understand the existing problems at grower's fields. Research environment for ginseng production was in prime time only for three years when Korea Ginseng Research Institute was established then gradually aggravated.

  • PDF