• Title/Summary/Keyword: fan motor

Search Result 252, Processing Time 0.019 seconds

A Study on Noise Identification of Indoor Air-conditioner Using Experimental Methods (실험적 방법을 통한 에어컨 실내기의 소음원 검출에 관한 연구)

  • 이성진;오재응;이정윤;강태호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.87-87
    • /
    • 2004
  • An air-conditioner has various noise sources such as a fan noise, a motor noise, and a vibration induced noise. To reduce these noise effectively, noise sources must be identified. Especially in this paper, the structure borne sound radiated from the motor bracket of the indoor air-conditioner is considered. To do this, the operational deflection shape, which is used for understanding of the behavior of the motor bracket at a particular frequency, is obtained and compared with the sound intensity, which is used for the noise identification. Through this study, the noise sources of indoor air-conditioner are defined and the effective noise reduction method is proposed.

  • PDF

THE DEVELOPMENT OF FAN COIL UNIT MOTOR WITH PLASTIC FRAME (합성수지 프레임을 이용한 휀코일 유니트 모터 개발)

  • Lee, Sun-Hwi
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.61-66
    • /
    • 1987
  • The metals has been used to the electric motor frame and brackets. The purpose of this project is to substitute engineering plastic doter frame for metal because of the demand for small size and environmental reliability. As a result of considering of mechanical strength, heat and injection characteristic of engineering plastics. PBT GF 30 has been selected as the material of electric motor frame including brackets. Design of the frame has been carried out on enough consideration of mechanical strength, heat-resisting and endurance. For the prevention of lower efficiency, the length of airgap between stator and rotor is reduced and for the reduction of vibration, slot combination is changed and the length of stator is increased.

  • PDF

An Experimental and Numerical Study on Centrifugal Compressor Noise (원심압축기 소음측정과 계산에 관한 연구)

  • Sun, Hyo-Sung;Eom, Seung-Sin;Shin, Hyung-Ki;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.119-124
    • /
    • 2000
  • The 3-stage centrifugal compressor is used in order to measure the noise spectra of compressor, and analyze the results. Two cases are investigated for compressor noise components. Case I includes total system such as compressor, inter-cooler, motor, and Case II excludes cooling system. BPF tonal noise is important in compressor, and cooling system including inter-cooler contributes to broadband noise. Also, motor, gear box, and motor cooling fan are the second contributions to total compressor noise. Centrifugal compressor flow-field is calculated using two-dimensional grid and Navier-Stokes equations. Static pressure increases, and total pressure decreases, as air passes through the compressor components.

  • PDF

Parallel Sensorless Speed Control using Power Angle for Dual SPMSMs Fed by a Single Inverter (단일 인버터 기반 두 대의 영구자석 동기전동기 병렬운전에서 전력각을 이용한 속도제어기법)

  • Kim, Kyung-Hoon;Yun, Chul;Kwon, Woo-Hyen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1481-1487
    • /
    • 2017
  • This paper proposes a sensorless speed control algorithm for parallel-connected dual Surface-mounted Permanent Magnet Synchronous Motors fed by a single inverter. For stable parallel operation of synchronous motors with a single inverter, each motor has to be constantly kept in the synchronization state regardless of load torque. If the master motor with the larger load is controlled, the synchronous state will be maintained. Therefore, detection of the master motor is essential. Conventionally, the master motor is determined by comparing the rotor position error from the relation between the back-EMF for torque angle and the flux position. consequently, the position sensor is deemed essential for finding the rotor position. In this paper, we proposed a method that decides the magnitude of the load from the power angle of two motors due to the load variation and selects the motor to control through the sign function for the sensorless speed control without the position sensor. The results of simulation and experiment conducted verify the efficacy of the proposed method.

Thermal Design and Analysis Evaluation of ISG Motor for Hybrid Electric Vehicles considering High-speed Driving Condition (고속 운전조건을 고려한 하이브리드 자동차용 ISG 모터 방열설계 및 해석 평가)

  • Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.59-64
    • /
    • 2014
  • Integrated Starter Generator (ISG) system improves the fuel economy of hybrid electric vehicles by using idle stop and go function, and regenerative braking system. To obtain the high performance and durability of ISG motor under continuously high load condition, the motor needs to properly design the cooling system (cooling fan and cooling structure). In this study, we suggested the enhanced design by modifying the thermal design of the ISG motor and then analyzed the improvement of the cooling performance under high-speed condition and generating mode by CFD simulation. The temperatures at the coil and the magnet of the enhanced model were decreased by about $4^{\circ}C$ and $6^{\circ}C$, respectively, compared to those of the conventional model. Therefore, we verified the cooling performance enhancement of the novel thermal design in the case of core loss increment due to the higher speed condition.

An Attitude Control of an Unstructured Object with Gyro Actuator (자이로 구동장치를 이용한 공중 물체의 자세 제어)

  • Chung, Young-Gu;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.563-565
    • /
    • 1999
  • In this paper, we control attitude of an unstructured object with gyro actuator. It is well known that the attitude control of an object hanging with wire is not easy using usual actuators. Even though an actuator such as a fan can be used for control of the object, it is difficult to meet a desired control objectives. We, because of these reasons, make a gyro actuator with two motors. The first motor is responsible for spinning the wheel at high speed and the second motor is used to turn the inner gimbal. Applying the torque to the second motor, which results in the turn of the outer gimbal, torque about the vertical axis will be obtained while the wheel of the gyro is spinning constantly. This torque is used to control the attitude of the object attached. Gyro actuator utilize control unstructured object such as I-beam carrying by tower crane, and isolate construction workers from the dangerous environments. We derive a relationship of wheel and its motor, find a proper capacity of wheel motor in order to rotate a wheel. Through experiments of attitude control, we show to obtain desired control objectives.

  • PDF

Thermal Analysis of Interior Permanent-Magnet Synchronous Motor by Electromagnetic Field-Thermal Linked Analysis

  • Lee, Sang-Taek;Kim, Hee-Jun;Cho, Ju-Hee;Joo, Dae-Suk;Kim, Dae-Kyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.905-910
    • /
    • 2012
  • This paper reports an investigation of pulse width modulation (PWM) techniques for twophase brushless DC (BLDC) motors fed by a two-phase eight-switch inverter in a fan application. The three-phase BLDC motor is widely applied in industry; however, a lower-cost two-phase BLDC motor and drive circuit has been greatly in demand in recent years. In this paper, we introduce a mathematical model of the two-phase BLDC motor with sinusoidal back electromotive forces (EMFs) based on traditional three-phase BLDC motors. To simplify the drive algorithm and speed up its application, we analyze the principle of block commutation for a two-phase BLDC motor drive in the 180-electricaldegree conduction mode, and we further propose five PWM schemes to improve the commutation performance of the two-phase BLDC drive. The effectiveness of the proposed PWM methods is verified through experiments.

Characteristic Analysis and Experimental Verification of the Axially Asymmetric Structured Outer-Rotor Type Permanent Magnet Motor

  • Seo, Myung-Ki;Lee, Tae-Yong;Park, Kyungsoo;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.898-904
    • /
    • 2016
  • In this study, we have dealt with a design characteristic of outer-rotor type permanent magnet (PM) motor applied for Engine Cooling Fan (ECF). When we design a motor with structure like this type, it is required as a requisite to consider 3-Dimensional (3-D) effect by implementing a non-linear Finite Element Analysis (FEA) due to a yoke-ceiling, which is perpendicular to the axis of rotation. We have analyzed identical models under three different conditions. The analysis has been performed through a non-linear 2-Dimensional (2-D) and 3-D FEA. Finally, the results have been compared with Back Electro-Motive Force (BEMF) value of actual motor model. As a result, a yoke-ceiling function as an additional flux path and the operating point on B-H curve of rotor material is shifted to non-saturation region relatively. Accordingly, magnetic flux linkage can be increased and motor size can be decreased under same input condition to satisfy ECF specification, such as torque.

Non-destructive Reliability Evaluation of Electronic Device by ESPI (ESPI를 이용한 전자부품 비파괴 신뢰성평가)

  • Yoon, Sung-Un;Kim, Koung-Suk;Jo, Seon-Hyung;Kang, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.630-633
    • /
    • 2001
  • This paper propose electronic speckle pattern interferometry(ESPI) for reliability evaluation of electronic device. Especially, vibration problem in a fan of air conditioner, motor of washing machine and etc. is important factor to design the devices. But, it is difficult to apply previous method, accelerometer to the devices with complex geometry. ESPI, non-contact measurement technique applies a commercial fan of air conditioner to vibration analysis. Vibration mode shapes, natural frequency and the range of the frequency are decided and compared with that of FEM analysis. In mechanical deign of new product, ESPI adds weak point of previous method to supply effective design information.

  • PDF

Measurements of Minute Unsteady Pressure on Three-Dimensional Fan with Arbitrary Axis Direction

  • Hirata, Katsuya;Fuchi, Takuya;Onishi, Yusuke;Takushima, Akira;Sato, Seiji;Funaki, Jiro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • The present study is a fundamental approach to develop the measuring technology for minute fluctuating pressures on the three-dimensional blade surfaces of the fan which rotates with an arbitrary rotation-axis direction. In this situation, we are required to correct the centrifugal-force effect, the gravitational-force effect and the other leading-error effects for accurate measurements of the minute pressures. The working fluid is air. A pressure transducer rotating with an arbitrary attitude is closely sealed by a twofold shroud system. The rotational motion with an arbitrary attitude is produced by fixing the pressure transducer to the cantilever which is connected to a motor-driven disc of 500mm in diameter and 5mm in thickness. As a result, we have quantitatively determined main governing effects upon the non-effective component of the pressure-transducer signal.