• Title/Summary/Keyword: false alarms

Search Result 199, Processing Time 0.02 seconds

Characterizing Information Processing in Visual Search According to Probability of Target Prevalence (표적 출현확률에 따른 시각탐색 정보처리 특성)

  • Park, Hyung-Bum;Son, Han-Gyeol;Hyun, Joo-Seok
    • Korean Journal of Cognitive Science
    • /
    • v.26 no.3
    • /
    • pp.357-375
    • /
    • 2015
  • In our daily life, the probability of target prevalence in visual search varies from very low to high. However, most laboratory studies of visual search used a fixed probability of target prevalence at 50%. The present study examined the properties of information processing during visual search where the probability of target prevalence was manipulated to vary from low (20%), medium (50%), to high (80%). The search items were made of simple shape stimuli, and search accuracy, signal detection measures, and reaction times (RTs) were analyzed for characterizing the effect of target prevalence on the information processing strategies for visual search. The analyses showed that the rates of misses increased whereas those of false alarms decreased in the search condition of low target prevalence, whereas the pattern was reversed in the high prevalence condition. Signal detection measures revealed that the target prevalence shifted response criterion (c) without affecting sensitivity (d'). In addition, RTs for correct rejection responses in the target-absent trials became delayed as the prevalence increased, whereas those for hits in the target-present trials were relatively constant regardless of the prevalence. The RT delay in the target-absent trials indicates that increased target prevalence made the 'quitting threshold' for search termination more conservative. These results support an account that the target prevalence effect in visual search arises from a shift of decision criteria and the subsequent changes in search information processing, while rejecting the account of a speed-accuracy tradeoff.

Extraction of Network Threat Signatures Using Latent Dirichlet Allocation (LDA를 활용한 네트워크 위협 시그니처 추출기법)

  • Lee, Sungil;Lee, Suchul;Lee, Jun-Rak;Youm, Heung-youl
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Network threats such as Internet worms and computer viruses have been significantly increasing. In particular, APTs(Advanced Persistent Threats) and ransomwares become clever and complex. IDSes(Intrusion Detection Systems) have performed a key role as information security solutions during last few decades. To use an IDS effectively, IDS rules must be written properly. An IDS rule includes a key signature and is incorporated into an IDS. If so, the network threat containing the signature can be detected by the IDS while it is passing through the IDS. However, it is challenging to find a key signature for a specific network threat. We first need to analyze a network threat rigorously, and write a proper IDS rule based on the analysis result. If we use a signature that is common to benign and/or normal network traffic, we will observe a lot of false alarms. In this paper, we propose a scheme that analyzes a network threat and extracts key signatures corresponding to the threat. Specifically, our proposed scheme quantifies the degree of correspondence between a network threat and a signature using the LDA(Latent Dirichlet Allocation) algorithm. Obviously, a signature that has significant correspondence to the network threat can be utilized as an IDS rule for detection of the threat.

Optimization of Post-Processing for Subsequence Matching in Time-Series Databases (시계열 데이터베이스에서 서브시퀀스 매칭을 위한 후처리 과정의 최적화)

  • Kim, Sang-Uk
    • The KIPS Transactions:PartD
    • /
    • v.9D no.4
    • /
    • pp.555-560
    • /
    • 2002
  • Subsequence matching, which consists of index searching and post-processing steps, is an operation that finds those subsequences whose changing patterns are similar to that of a given query sequence from a time-series database. This paper discusses optimization of post-processing for subsequence matching. The common problem occurred in post-processing of previous methods is to compare the candidate subsequence with the query sequence for discarding false alarms whenever each candidate subsequence appears during index searching. This makes a sequence containing candidate subsequences to be accessed multiple times from disk, and also have a candidate subsequence to be compared with the query sequence multiple times. These redundancies cause the performance of subsequence matching to degrade seriously. In this paper, we propose a new optimal method for resolving the problem. The proposed method stores ail the candidate subsequences returned by index searching into a binary search tree, and performs post-processing in a batch fashion after finishing the index searching. By this method, we are able to completely eliminate the redundancies mentioned above. For verifying the performance improvement effect of the proposed method, we perform extensive experiments using a real-life stock data set. The results reveal that the proposed method achieves 55 times to 156 times speedup over the previous methods.

A Study on Response Characteristics of Photoelectric Type Smoke Detector Chamber Due to Dust Color (분진색상에 따른 광전식연기감지기 챔버의 응답특성에 관한 연구)

  • Lee, Ho-Sung;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.44-52
    • /
    • 2017
  • This paper is based on a study of the response characteristics of photoelectric type smoke detector chambers according to dust color. Due to an amendment to the Fire Safety Codes to automatic fire alarm systems and visual alarm device, the installation of indoor smoke detectors has become mandatory, but in Korea there is still insufficient research on the non-operation or false alarms that could arise in indoor environments by indoor dust and other environmental conditions etc. In light of this, for this study, research was conducted on the indoor adaptability of smoke detector under various colors of fiber dust that were judged to occur most frequently in among the common indoor dust, photoelectric smoke detector with the lattice-type smoke detection chamber that the smoke detector which is most popular in the country was used, and four colors of fiber dust (brown, white, gray and black) were used the test dusts for carrying out dust and sensitivity testing. Also, the voltage of the photocell part of the smoke chamber was measured, and the scattering phenomenon in the chamber was observed. The result of the testing showed that all four dust types were suitable for dust and sensitivity testing under conditions of pollution A. Yet, there were occasions, at pollution B or C, where the brown, white and gray dust would cause fail alarm during operation testing. And black dust was confirmed to cause non-operation during operation testing. In the case of brown and white dust, the voltage measurement result of the photocell part of the smoke chamber confirmed that the voltage increases as the pollution level increases, and in the case of gray and black dust, the voltage decreases.

The Influence of Change Prevalence on Visual Short-Term Memory-Based Change Detection Performance (변화출현확률이 시각단기기억 기반 변화탐지 수행에 미치는 영향)

  • Son, Han-Gyeol;Hyun, Joo-Seok
    • Korean Journal of Cognitive Science
    • /
    • v.32 no.3
    • /
    • pp.117-139
    • /
    • 2021
  • The way of change detection in which presence of a different item is determined between memory and test arrays with a brief in-between time interval resembles how visual search is done considering that the different item is searched upon the onset of a test array being compared against the items in memory. According to the resemblance, the present study examined whether varying the probability of change occurrence in a visual short-term memory-based change detection task can influence the aspect of response-decision making (i.e., change prevalence effect). The simple-feature change detection task in the study consisted of a set of four colored boxes followed by another set of four colored boxes between which the participants determined presence or absence of a color change from one box to the other. The change prevalence was varied to 20, 50, or 80% in terms of change occurrences in total trials, and their change detection errors, detection sensitivity, and their subsequent RTs were analyzed. The analyses revealed that as the change prevalence increased, false alarms became more frequent while misses became less frequent, along with delayed correct-rejection responses. The observed change prevalence effect looks very similar to the target prevalence effect varying according to probability of target occurrence in visual search tasks, indicating that the background principles deriving these two effects may resemble each other.

Application of Integrated Modelling Framework Consisted of Delft3D and HABITAT for Habitat Suitability Assessment (생물서식지 적합성 평가를 위한 Delft3D와 HABITAT 모델의 연계 적용)

  • Lim, Hyejung;Na, Eun Hye;Jeon, Hyeong Cheol;Song, Hojin;Yoo, Hojun;Hwang, Soon Hong;Ryu, Hui-Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.217-228
    • /
    • 2021
  • This paper discusses a methodology where an integrated modelling framework is used to quantify the risk derived from anthropic activities on habitats and species. To achieve this purpose, a tool comprising the Delft3D and HABITAT model, was applied in the Yeongsan river. Delft3D effectively simulated the operational condition and flow of weirs in river. In accuracy evaluation of the Delft3D-FLOW, the Bias, Pbias, Mean Absolute Error (MAE), Nash-Sutcliffe Efficiency (NSE), and Index of Agreement (IOA) were used, and the result was evaluated as grade above 'Satisfactory'. The HABITAT calculated Habitat Suitability Value (HSV) for the following eight species: mammal, fish, aquatic plant, and benthic macroinvertebrate. An Area was defined as a suitable habitat if the HSV was larger than 0.5. HABITAT was judged accurately by measuring the Correct Classification rate (CCR) and the area under the ROC curve (AUC). For benthic macroinvertebrate, the CCR and AUC were 77% and 0.834, respectively, at thresholds of 0.017 and 4 inds/m2 for HSV and individuals per unit area. This meant that the HABITAT model accurately predicted the appearance of the benthic macroinvertebrates by approximately 77% and that the probability of false alarms was also very low. As a result of evaluating the suitability of habitats, in the Yeongsan river, if the annual "lowest level" (Seungchon weir: 2.5 EL.m/ Juksan weir: -1.35 EL.m) was maintained, the average habitat improvement effect of 6.5%P compared to the 'reference' scenario was predicted. Consequently, it was demonstrated that the integrated modelling framework for habitat suitability assessment is able to support the remedy aquatic ecological management.

An Acoustic Event Detection Method in Tunnels Using Non-negative Tensor Factorization and Hidden Markov Model (비음수 텐서 분해와 은닉 마코프 모델을 이용한 터널 환경에서의 음향 사고 검지 방법)

  • Kim, Nam Kyun;Jeon, Kwang Myung;Kim, Hong Kook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.9
    • /
    • pp.265-273
    • /
    • 2018
  • In this paper, we propose an acoustic event detection method in tunnels using non-negative tensor factorization (NTF) and hidden Markov model (HMM) applied to multi-channel audio signals. Incidents in tunnel are inherent to the system and occur unavoidably with known probability. Incidents can easily happen minor accidents and extend right through to major disaster. Most incident detection systems deploy visual incident detection (VID) systems that often cause false alarms due to various constraints such as night obstacles and a limit of viewing angle. To this end, the proposed method first tries to separate and detect every acoustic event, which is assumed to be an in-tunnel incident, from noisy acoustic signals by using an NTF technique. Then, maximum likelihood estimation using Gaussian mixture model (GMM)-HMMs is carried out to verify whether or not each detected event is an actual incident. Performance evaluation shows that the proposed method operates in real time and achieves high detection accuracy under simulated tunnel conditions.

A Study on Particulate Matter Forecasting Improvement by using Asian Dust Emissions in East Asia (황사배출량을 적용한 동아시아 미세먼지 예보 개선 연구)

  • Choi, Daeryun;Yun, Huiyoung;Chang, Limseok;Lee, Jaebum;Lee, Younghee;Myoung, Jisu;Kim, Taehee;Koo, Younseo
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.531-546
    • /
    • 2018
  • Air quality forecasting system with Asian dust emissions was developed in East Asia, and $PM_{10}$ forecasting performance of chemical transport model with Asian dust emissions was validated and evaluated. The chemical transport model (CTM) with Asian dust emission was found to supplement $PM_{10}$ concentrations that had been under-estimated in China regions and improved statistics for performance of CTM, although the model were overestimated during some periods in China. In Korea, the prediction model adequately simulated inflow of Asian dust events on February 22~24 and March 16~17, but the model is found to be overestimated during no Asian dust event periods on April. However, the model supplemented $PM_{10}$ concentrations, which was underestimated in most regions in Korea and the statistics for performance of the models were improved. The $PM_{10}$ forecasting performance of air quality forecasting model with Asian dust emissions tends to improve POD (Probability of Detection) compared to basic model without Asian dust emissions, but A (Accuracy) has shown similar or decreased, and FAR (False Alarms) have increased during 2017.Therefore, the developed air quality forecasting model with Asian dust emission was not proposed as a representative $PM_{10}$ forecast model in South Korea.

Minimizing Estimation Errors of a Wind Velocity Forecasting Technique That Functions as an Early Warning System in the Agricultural Sector (농업기상재해 조기경보시스템의 풍속 예측 기법 개선 연구)

  • Kim, Soo-ock;Park, Joo-Hyeon;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.63-77
    • /
    • 2022
  • Our aim was to reduce estimation errors of a wind velocity model used as an early warning system for weather risk management in the agricultural sector. The Rural Development Administration (RDA) agricultural weather observation network's wind velocity data and its corresponding estimated data from January to December 2020 were used to calculate linear regression equations (Y = aX + b). In each linear regression, the wind estimation error at 87 points and eight time slots per day (00:00, 03:00, 06:00, 09.00, 12.00, 15.00, 18.00, and 21:00) is the dependent variable (Y), while the estimated wind velocity is the independent variable (X). When the correlation coefficient exceeded 0.5, the regression equation was used as the wind velocity correction equation. In contrast, when the correlation coefficient was less than 0.5, the mean error (ME) at the corresponding points and time slots was substituted as the correction value instead of the regression equation. To enable the use of wind velocity model at a national scale, a distribution map with a grid resolution of 250 m was created. This objective was achieved b y performing a spatial interpolation with an inverse distance weighted (IDW) technique using the regression coefficients (a and b), the correlation coefficient (R), and the ME values for the 87 points and eight time slots. Interpolated grid values for 13 weather observation points in rural areas were then extracted. The wind velocity estimation errors for 13 points from January to December 2019 were corrected and compared with the system's values. After correction, the mean ME of the wind velocities reduced from 0.68 m/s to 0.45 m/s, while the mean RMSE reduced from 1.30 m/s to 1.05 m/s. In conclusion, the system's wind velocities were overestimated across all time slots; however, after the correction model was applied, the overestimation reduced in all time slots, except for 15:00. The ME and RMSE improved b y 33% and 19.2%, respectively. In our system, the warning for wind damage risk to crops is driven by the daily maximum wind speed derived from the daily mean wind speed obtained eight times per day. This approach is expected to reduce false alarms within the context of strong wind risk, by reducing the overestimation of wind velocities.