• Title/Summary/Keyword: false alarms

Search Result 199, Processing Time 0.041 seconds

An Open Circuit Fault Diagnostic Technique in IGBTs for AC to DC Converters Applied in Microgrid Applications

  • Khomfoi, Surin;Sae-Kok, Warachart;Ngamroo, Issarachai
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.801-810
    • /
    • 2011
  • An open circuit fault diagnostic method in IGBTs for the ac to dc converters used in microgrid applications is developed in this paper. An ac to dc converter is a key technology for microgrids in order to interface both distributed generation (DG) and renewable energy resources (RES). Also, highly reliable ac to dc converters are necessary to keep converters in continuous operation as long as possible during power switch fault conditions. Therefore, the proposed fault diagnostic method is developed to reduce the fault detection time and to avoid any other fault alarms because continuous operation is desired. The proposed diagnostic method is a combination of the absolute normalized dc current technique and the false alarm suppression algorithm to overcome the long fault detection time and fault alarm problems. The simulation and experimental results show that the developed fault diagnostic method can perform fault detection within about one cycle. The results illustrate that the reliability of an ac to dc converter interfaced with a microgrid can be improved by using the proposed fault diagnostic method.

Road-Lane Detection Based on a Cumulative Distribution Function of Edge Direction

  • Yi, Un-Kun;Lee, Joon-Woong;Baek, Kwang-Ryul
    • Journal of KIEE
    • /
    • v.11 no.1
    • /
    • pp.69-77
    • /
    • 2001
  • This paper describes an image processing algorithm capable of recognizing road lanes by using a CDF(cumulative distribution function). The CDF is designed for the model function of road lanes. Based on the assumptions that there are no abrupt changes in the direction and location of road lanes and that the intensity of lane boundaries differs from that of the background, we formulated the CDF, which accumulates the edge magnitude for edge directions. The CDF has distinctive peak points at the vicinity of lane directions due to the directional and the positional continuities of a lane. To obtain lane-related information a scatter diagram was constructed by collecting edge pixels, of which the direction corresponds to the peak point of the CDF, then the principal axis-based line fitting was performed for the scatter diagram. Noises can cause many similar features to appear and to disappear in an image. Therefore, to reduce the noise effect a recursive estimator of the CDF was introduced, and also to prevent false alarms or miss detection a scene understanding index (DUI) was formulated by the statistical parameters of the CDF. The proposed algorithm has been implemented in real time on video data obtained from a test vehicle driven on a typical highway.

  • PDF

Adaptive Target Detection Algorithm Using Gray Difference, Similarity and Adjacency (밝기 차, 유사성, 근접성을 이용한 적응적 표적 검출 알고리즘)

  • Lee, Eun-Young;Gu, Eun-Hye;Yoo, Hyun-Jung;Park, Kil-Houm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.736-743
    • /
    • 2013
  • In IRST(infrared search and track) system, the small target detection is very difficult because the IR(infrared) image have various clutter and sensor noise. The noise and clutter similar to the target intensity value produce many false alarms. In this paper. We propose the adaptive detection method which obtains optimal target detection using the image intensity information and the prior information of target. In order to enhance the target, we apply the human visual system. we determine the adaptive threshold value using image intensity and distance measure in target enhancement image. The experimental results indicate that the proposed method can efficiently extract target region in various IR images.

A Study on Background Learning for Robust Face Recognition (강건한 얼굴인식을 위한 배경학습에 관한 연구)

  • 박동희;설증보;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.608-611
    • /
    • 2004
  • In this paper, we propose a robust face recognition technique based on the principle of eigenfaces. The traditional eigenface recognition (EFR) method works quite well when the input test patterns are cropped fares. However, when confronted with recognizing faces embedded in arbitrary backgrounds, the EFR method fails to discriminate effectively between faces and background patterns, giving rise to many false alarms. In order to improve robustness in the presence of background, we argue in favor of loaming the distribution of background patterns. A background space is constructed from the background patterns and this space together with the face space is used for recognizing faces. The proposed method outperforms the traditional EFR technique and gives very good results even on complicated scenes.

  • PDF

A Multiple Instance Learning Problem Approach Model to Anomaly Network Intrusion Detection

  • Weon, Ill-Young;Song, Doo-Heon;Ko, Sung-Bum;Lee, Chang-Hoon
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.14-21
    • /
    • 2005
  • Even though mainly statistical methods have been used in anomaly network intrusion detection, to detect various attack types, machine learning based anomaly detection was introduced. Machine learning based anomaly detection started from research applying traditional learning algorithms of artificial intelligence to intrusion detection. However, detection rates of these methods are not satisfactory. Especially, high false positive and repeated alarms about the same attack are problems. The main reason for this is that one packet is used as a basic learning unit. Most attacks consist of more than one packet. In addition, an attack does not lead to a consecutive packet stream. Therefore, with grouping of related packets, a new approach of group-based learning and detection is needed. This type of approach is similar to that of multiple-instance problems in the artificial intelligence community, which cannot clearly classify one instance, but classification of a group is possible. We suggest group generation algorithm grouping related packets, and a learning algorithm based on a unit of such group. To verify the usefulness of the suggested algorithm, 1998 DARPA data was used and the results show that our approach is quite useful.

A Clustering-Based Fault Detection Method for Steam Boiler Tube in Thermal Power Plant

  • Yu, Jungwon;Jang, Jaeyel;Yoo, Jaeyeong;Park, June Ho;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.848-859
    • /
    • 2016
  • System failures in thermal power plants (TPPs) can lead to serious losses because the equipment is operated under very high pressure and temperature. Therefore, it is indispensable for alarm systems to inform field workers in advance of any abnormal operating conditions in the equipment. In this paper, we propose a clustering-based fault detection method for steam boiler tubes in TPPs. For data clustering, k-means algorithm is employed and the number of clusters are systematically determined by slope statistic. In the clustering-based method, it is assumed that normal data samples are close to the centers of clusters and those of abnormal are far from the centers. After partitioning training samples collected from normal target systems, fault scores (FSs) are assigned to unseen samples according to the distances between the samples and their closest cluster centroids. Alarm signals are generated if the FSs exceed predefined threshold values. The validity of exponentially weighted moving average to reduce false alarms is also investigated. To verify the performance, the proposed method is applied to failure cases due to boiler tube leakage. The experiment results show that the proposed method can detect the abnormal conditions of the target system successfully.

Automatic Detection of Degraded Regions in Old Film Archive (오래된 영화에서 손상된 영역 자동검출)

  • Kim, Kyung-Tai;Kim, Byung-Geun;Kim, Eun-Yi
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.120-124
    • /
    • 2010
  • This paper presents a method that can automatically detect variety of degradations (i.e., scratches and blotches) in old film archive. The proposed method consists of candidate detection and verification. Degradations are first identified by finding the local extreme of a frame in spatiotemporal domains, thereby using edge detector and SROD detector. Then, to remove some false alarms occurred in the first stages, the verification is performed using the texture and shape properties of scratches and blotches. The textural properties of scratches and blotches are learned using neural networks (NNs) and their shapes are represented using morphological filters. The experiments were performed on several old films, then the results demonstrated the effectiveness of the proposed method, where it has a precision of 81% and a recall of 79%.

Fast and Robust Face Detection based on CNN in Wild Environment (CNN 기반의 와일드 환경에 강인한 고속 얼굴 검출 방법)

  • Song, Junam;Kim, Hyung-Il;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1310-1319
    • /
    • 2016
  • Face detection is the first step in a wide range of face applications. However, detecting faces in the wild is still a challenging task due to the wide range of variations in pose, scale, and occlusions. Recently, many deep learning methods have been proposed for face detection. However, further improvements are required in the wild. Another important issue to be considered in the face detection is the computational complexity. Current state-of-the-art deep learning methods require a large number of patches to deal with varying scales and the arbitrary image sizes, which result in an increased computational complexity. To reduce the complexity while achieving better detection accuracy, we propose a fully convolutional network-based face detection that can take arbitrarily-sized input and produce feature maps (heat maps) corresponding to the input image size. To deal with the various face scales, a multi-scale network architecture that utilizes the facial components when learning the feature maps is proposed. On top of it, we design multi-task learning technique to improve detection performance. Extensive experiments have been conducted on the FDDB dataset. The experimental results show that the proposed method outperforms state-of-the-art methods with the accuracy of 82.33% at 517 false alarms, while improving computational efficiency significantly.

Instance-Level Subsequence Matching Method based on a Virtual Window (가상 윈도우 기반 인스턴스 레벨 서브시퀀스 매칭 방안)

  • Ihm, Sun-Young;Park, Young-Ho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.2
    • /
    • pp.43-46
    • /
    • 2014
  • A time-series data is the collection of real numbers over the time intervals. One of the main tasks in time-series data is efficiently to find subsequences similar to a given query sequence. In this paper, we propose an efficient subsequence matching method, which is called Instance-Match (I-Match). I-Match constructs a virtual window in order to reduce false alarms. Through the experiment with real data set and query sets, we show that I-Match improves query processing time by up to 2.95 times and significantly reduces the number of candidates comparing to Dual Match.

Deep Learning in Drebin: Android malware Image Texture Median Filter Analysis and Detection

  • Luo, Shi-qi;Ni, Bo;Jiang, Ping;Tian, Sheng-wei;Yu, Long;Wang, Rui-jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3654-3670
    • /
    • 2019
  • This paper proposes an Image Texture Median Filter (ITMF) to analyze and detect Android malware on Drebin datasets. We design a model of "ITMF" combined with Image Processing of Median Filter (MF) to reflect the similarity of the malware binary file block. At the same time, using the MAEVS (Malware Activity Embedding in Vector Space) to reflect the potential dynamic activity of malware. In order to ensure the improvement of the classification accuracy, the above-mentioned features(ITMF feature and MAEVS feature)are studied to train Restricted Boltzmann Machine (RBM) and Back Propagation (BP). The experimental results show that the model has an average accuracy rate of 95.43% with few false alarms. to Android malicious code, which is significantly higher than 95.2% of without ITMF, 93.8% of shallow machine learning model SVM, 94.8% of KNN, 94.6% of ANN.