A Study on Background Learning for Robust Face Recognition

강건한 얼굴인식을 위한 배경학습에 관한 연구

  • Published : 2004.05.01

Abstract

In this paper, we propose a robust face recognition technique based on the principle of eigenfaces. The traditional eigenface recognition (EFR) method works quite well when the input test patterns are cropped fares. However, when confronted with recognizing faces embedded in arbitrary backgrounds, the EFR method fails to discriminate effectively between faces and background patterns, giving rise to many false alarms. In order to improve robustness in the presence of background, we argue in favor of loaming the distribution of background patterns. A background space is constructed from the background patterns and this space together with the face space is used for recognizing faces. The proposed method outperforms the traditional EFR technique and gives very good results even on complicated scenes.

본 논문에서는 고유얼굴 특성에 기반한 강건한 얼굴 인식 기술을 제안한다. 전형적인 고유얼굴 인식방법은 학습영역에서 고유얼굴을 생성시키고, 모든 학습영상을 이 얼굴공간에 투영시켜 각각의 사람마다 저장된 성분들을 비교하거나 상관시켜 특징들을 추출합니다. 복잡한 배경에 있는 얼굴들을 인식할 때 EFR방법은 얼굴인식에는 강하지만, 얼굴과 배경들 사이의 구분을 실패하게 된다 배경에서 강건한 얼굴인식을 위해서 배경패턴을 학습하며, 배경영역은 배경패턴으로부터 생성되어 얼굴영역과 함께 얼굴 인식을 위하여 사용된다. 본 논문에서 제안한 방법이 EFR방법보다 성능과 복잡한 배경하에서 매우 좋은 결과를 나타냄을 확인할 수 있었다.

Keywords