• Title/Summary/Keyword: false alarm rate

Search Result 272, Processing Time 0.026 seconds

Evaluation of Source Identification Method Based on Energy-Weighting Level with Portal Monitoring System Using Plastic Scintillator

  • Lee, Hyun Cheol;Koo, Bon Tack;Choi, Chang Il;Park, Chang Su;Kwon, Jeongwan;Kim, Hong-Suk;Chung, Heejun;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.117-129
    • /
    • 2020
  • Background: Radiation portal monitors (RPMs) involving plastic scintillators installed at the border inspection sites can detect illicit trafficking of radioactive sources in cargo containers within seconds. However, RPMs may generate false alarms because of the naturally occurring radioactive materials. To manage these false alarms, we previously suggested an energy-weighted algorithm that emphasizes the Compton-edge area as an outstanding peak. This study intends to evaluate the identification of radioactive sources using an improved energy-weighted algorithm. Materials and Methods: The algorithm was modified by increasing the energy weighting factor, and different peak combinations of the energy-weighted spectra were tested for source identification. A commercialized RPM system was used to measure the energy-weighted spectra. The RPM comprised two large plastic scintillators with dimensions of 174 × 29 × 7 ㎤ facing each other at a distance of 4.6 m. In addition, the in-house-fabricated signal processing boards were connected to collect the signal converted into a spectrum. Further, the spectra from eight radioactive sources, including special nuclear materials (SNMs), which were set in motion using a linear motion system (LMS) and a cargo truck, were estimated to identify the source identification rate. Results and Discussion: Each energy-weighted spectrum exhibited a specific peak location, although high statistical fluctuation errors could be observed in the spectrum with the increasing source speed. In particular, 137Cs and 60Co in motion were identified completely (100%) at speeds of 5 and 10 km/hr. Further, SNMs, which trigger the RPM alarm, were identified approximately 80% of the time at both the aforementioned speeds. Conclusion: Using the modified energy-weighted algorithm, several characteristics of the energy weighted spectra could be observed when the used sources were in motion and when the geometric efficiency was low. In particular, the discrimination between 60Co and 40K, which triggers false alarms at the primary inspection sites, can be improved using the proposed algorithm.

The Multiple Index Approach for the Evaluation of Tourism and Recreation Related Pictograms (MIA를 이용한 관광.휴양관련 픽토그램의 인지효과 평가)

  • Kim Jeong-Min;Yoo Ki-Joon
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.3
    • /
    • pp.319-330
    • /
    • 2006
  • It is imperative that pictograms as pictorial information be empirically tested in order to establish whether the users do indeed associate the appropriate referent in an actual usage situation. The experiment employing the Multiple Index Approach was conducted in a class room with 64 subjects to evaluate tourism and recreation related pictograms. Performance data(hit rate, false alarm and missing value) of 25 pictograms were collected and the average hit rate as a prime index of pictogram associativeness was 65.82%. The matrix analysis showed 14 pictograms were high in subjective certainty and subjective suitability. The other 11, which were low in both criteria may require prior learning or improvement of the pictogram designs to represent their meanings more distinctively.

Design and Evaluation of a Weighted Intrusion Detection Method for VANETs (VANETs을 위한 가중치 기반 침입탐지 방법의 설계 및 평가)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.181-188
    • /
    • 2011
  • With the rapid proliferation of wireless networks and mobile computing applications, the landscape of the network security has greatly changed recently. Especially, Vehicular Ad Hoc Networks maintaining network topology with vehicle nodes of high mobility are self-organizing Peer-to-Peer networks that typically have short-lasting and unstable communication links. VANETs are formed with neither fixed infrastructure, centralized administration, nor dedicated routing equipment, and vehicle nodes are moving, joining and leaving the network with very high speed over time. So, VANET-security is very vulnerable for the intrusion of malicious and misbehaving nodes in the network, since VANETs are mostly open networks, allowing everyone connection without centralized control. In this paper, we propose a weighted intrusion detection method using rough set that can identify malicious behavior of vehicle node's activity and detect intrusions efficiently in VANETs. The performance of the proposed scheme is evaluated by a simulation study in terms of intrusion detection rate and false alarm rate for the threshold of deviation number ${\epsilon}$.

Image based Fire Detection using Convolutional Neural Network (CNN을 활용한 영상 기반의 화재 감지)

  • Kim, Young-Jin;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1649-1656
    • /
    • 2016
  • Performance of the existing sensor-based fire detection system is limited according to factors in the environment surrounding the sensor. A number of image-based fire detection systems were introduced in order to solve these problem. But such a system can generate a false alarm for objects similar in appearance to fire due to algorithm that directly defines the characteristics of a flame. Also fir detection systems using movement between video flames cannot operate correctly as intended in an environment in which the network is unstable. In this paper, we propose an image-based fire detection method using CNN (Convolutional Neural Network). In this method, firstly we extract fire candidate region using color information from video frame input and then detect fire using trained CNN. Also, we show that the performance is significantly improved compared to the detection rate and missing rate found in previous studies.

Construction & Evaluation of GloSea5-Based Hydrological Drought Outlook System (수문학적 가뭄전망을 위한 GloSea5의 활용체계 구축 및 예측성 평가)

  • Son, Kyung-Hwan;Bae, Deg-Hyo;Cheong, Hyun-Sook
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.271-281
    • /
    • 2015
  • The objectives of this study are to develop a hydrological drought outlook system using GloSea5 (Global Seasonal forecasting system 5) which has recently been used by KMA (Korea Meteorological Association) and to evaluate the forecasting capability. For drought analysis, the bilinear interpolation method was applied to spatially downscale the low-resolution outputs of GloSea5 and PR (Predicted Runoff) was produced for different lead times (i.e., 1-, 2-, 3-month) running LSM (Land Surface Model). The behavior of PR anomaly was similar to that of HR (Historical Runoff) and the estimated values were negative up to lead times of 1- and 2-month. For the evaluation of drought outlook, SRI (Standardized Runoff Index) was selected and PR_SRI estimated using PR. ROC score was 0.83, 0.71, 0.60 for 1-, 2- and 3-month lead times, respectively. It also showed the hit rate is high and false alarm rate is low as shorter lead time. The temporal Correlation Coefficient (CC) was 0.82, 0.60, 0.31 and Root Mean Square Error (RMSE) was 0.52, 0.86, 1.20 for 1-, 2-, 3-month lead time, respectively. The accuracy of PR_SRI was high up to 1- and 2-month lead time on local regions except the Gyeonggi and Gangwon province. It can be concluded that GloSea5 has high applicability for hydrological drought outlook.

Development of a Fuzzy-Genetic Algorithm-based Incident Detection Model with Self-adaptation Capability (Fuzzy-Genetic Algorithm기반의 자가적응형 돌발상황 검지모형 개발 연구)

  • Lee, Si-Bok;Kim, Young-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.159-173
    • /
    • 2004
  • This study utilizes the fuzzy logic and genetic algorithm to improve the existing incident detection models by addressing the problems associated with "crisp" thresholds and model transferability (applicability). The model's major components were designed to be a set of the fuzzy inference engines, and for the self-adaptation capability the genetic algorithm was introduced in optimization(or training) of the fuzzy membership functions. This approach is often called "the hybrid of fuzzy-genetic algorithm" The model performance was tested and found to be compatible with that of the existing well-recognized models in terms of performance measures such as detection rate, false alarm rate, and detection time. This study was not an effort for simple improvement of the model performance, but an experimental attempt to incorporate new characteristics essential for the incident detection model to be universally applicable for various roadway and traffic conditions. The study results prove that the initial objective of the study was satisfied, and suggest a direction that the future research work in this area must follow.

Quality Level Classification of ECG Measured using Non-Constraint Approach (무구속적 방법으로 측정된 심전도의 신뢰도 판별)

  • Kim, Y.J.;Heo, J.;Park, K.S.;Kim, S.
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.161-167
    • /
    • 2016
  • Recent technological advances in sensor fabrication and bio-signal processing enabled non-constraint and non-intrusive measurement of human bio-signals. Especially, non-constraint measurement of ECG makes it available to estimate various human health parameters such as heart rate. Additionally, non-constraint ECG measurement of wheelchair user provides real-time health parameter information for emergency response. For accurate emergency response with low false alarm rate, it is necessary to discriminate quality levels of ECG measured using non-constraint approach. Health parameters acquired from low quality ECG results in inaccurate information. Thus, in this study, a machine learning based approach for three-class classification of ECG quality level is suggested. Three sensors are embedded in the back seat, chest belt, and handle of automatic wheelchair. For the two sensors embedded in back seat and chest belt, capacitively coupled electrodes were used. The accuracy of quality level classification was estimated using Monte Carlo cross validation. The proposed approach demonstrated accuracy of 94.01%, 95.57%, and 96.94% for each channel of three sensors. Furthermore, the implemented algorithm enables classification of user posture by detection of contacted electrodes. The accuracy for posture estimation was 94.57%. The proposed algorithm will contribute to non-constraint and robust estimation of health parameter of wheelchair users.

Small Target Detection Method Using Bilateral Filter Based on Surrounding Statistical Feature (주위 통계 특성에 기초한 양방향 필터를 이용한 소형 표적 검출 기법)

  • Bae, Tae-Wuk;Kim, Young-Taeg
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.756-763
    • /
    • 2013
  • Bilateral filter (BF), functioning by two Gaussian filters, domain and range filter is a nonlinear filter for sharpness enhancement and noise removal. In infrared (IR) small target detection field, the BF is designed by background predictor for predicting background not including small target. For this, the standard deviations of the two Gaussian filters need to be changed adaptively in background and target region of an infrared image. In this paper, the proposed bilateral filter make the standard deviations changed adaptively, using variance feature of mean values of surrounding block neighboring local filter window. And, in case the variance of mean values for surrounding blocks is low for any processed pixel, the pixel is classified to flat background and target region for enhancing background prediction. On the other hand, any pixel with high variance for surrounding blocks is classified to edge region. Small target can be detected by subtracting predicted background from original image. In experimental results, we confirmed that the proposed bilateral filter has superior target detection rate, compared with existing methods.

An Algorithm for Increasing Worm Detection Effetiveness in Virus Throttling (바이러스 쓰로틀링의 웜 탐지 효율 향상 알고리즘)

  • Kim, Jang-Bok;Kim, Sang-Joong;Choi, Sun-Jung;Shim, Jae-Hong;Chung, Gi-Hyun;Choi, Kyung-Hee
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.3
    • /
    • pp.186-192
    • /
    • 2007
  • The virus throttling technique[5,6] is the one of well-known worm early technique. Virus throttling reduce the worm propagration by delaying connection packets artificially. However the worm detection time is not sufficiently fast as expected when the worm generated worm packets at a low rate. This is because the virus throttling technique use only delay queue length. In this paper we use the trend of weighted average delay queue length (TW AQL). By using TW AQL, the worm detection time is not only shorten at a low rate Internet worm, but also the false alarm does not largely increase. By experiment, we also proved our proposed algorithm had better performance.

Detection of Moving Objects in Crowded Scenes using Trajectory Clustering via Conditional Random Fields Framework (Conditional Random Fields 구조에서 궤적군집화를 이용한 혼잡 영상의 이동 객체 검출)

  • Kim, Hyeong-Ki;Lee, Gwang-Gook;Kim, Whoi-Yul
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.8
    • /
    • pp.1128-1141
    • /
    • 2010
  • This paper proposes a method of moving object detection in crowded scene using clustered trajectory. Unlike previous appearance based approaches, the proposed method employes motion information only to isolate moving objects. In the proposed method, feature points are extracted from input frames first and then feature tracking is followed to create feature trajectories. Based on an assumption that feature points originated from the same objects shows similar motion as the object moves, the proposed method detects moving objects by clustering trajectories of similar motions. For this purpose an energy function based on spatial proximity, motion coherence, and temporal continuity is defined to measure the similarity between two trajectories and the clustering is achieved by minimizing the energy function in CRFs (conditional random fields). Compared to previous methods, which are unable to separate falsely merged trajectories during the clustering process, the proposed method is able to rearrange the falsely merged trajectories during iteration because the clustering is solved my energy minimization in CRFs. Experiment results with three different crowded scenes show about 94% detection rate with 7% false alarm rate.