• Title/Summary/Keyword: fake GPS

Search Result 4, Processing Time 0.026 seconds

Implementation of 4-Channel Fake GPS Signal Generator (4 채널 GPS Fake 신호 발생기 구현)

  • Kwon, Keum-Cheol;Yang, Cheol-Kwan;Shim, Duk-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1306-1307
    • /
    • 2015
  • As a basic research for the detection of GPS spoofing signal we study to generate a GPS fake signal which can mislead GPS receivers, and show that the fake signal is generated and transmitted through a pseudolite and the GPS receivers produce a wrong position as designated in the fake signal.

  • PDF

Fake GPS Detection for the Online Game Service on Server-Side (모의 위치 서비스를 이용한 온라인 게임 악용 탐지 방안)

  • Han, Jaehyeok;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.5
    • /
    • pp.1069-1076
    • /
    • 2017
  • Recently $Pok\acute{e}mon$ GO implements an online game with location-based real time augmented reality on mobile. The correct play of this game should be based on collecting the $Pok\acute{e}mon$ that appears as the user moves around by foot, but as the popularity increases, it appears an abuse to play easily. Many people have used an application that provides a mock location service such as Fake GPS, and these applications can be judged to be cheating in online games because they can play games in the house without moving. Detection of such cheating from a client point of view (mobile device) can consume a large amount of resources, which can reduce the speed of the game. It is difficult for developers to apply detection methods that negatively affect game usage and user's satisfaction. Therefore, in this paper, we propose a method to detect users abusing mock location service in online game by route analysis using GPS location record from the server point of view.

Performance Comparison of Anti-Spoofing Methods using Pseudorange Measurements (의사거리 측정치를 이용하는 기만신호 검출 기법의 성능 비교)

  • Cho, Sung-Lyong;Shin, Mi-Young;Lee, Sang-Jeong;Park, Chan-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.793-800
    • /
    • 2010
  • GPS spoofing is an intentional interference which uses the mimic GPS signals to fake the receivers. The generic GPS receiver is hard to recognize the spoofing signal because the spoofer generates the fake signals as close as possible to the GPS signal. So the spoofer can do critical damage to public operations. This paper introduces a basic concept of spoofing and analyzes the effect of the spoofing signal to the GPS receiver. Also for stand-alone GPS receivers, two anti-spoofing methods are implemented : RAIM based method and the SQM based method. To evaluate the performance of anti-spoofing method, the software based spoofing signal generator and GPS signal generator are implemented. The performance of the anti-spoofing methods obtained using the output of the software based GPS receiver shows that SQM based method is more effective when multiple spoofing signals exist.

A Highly Secure Identity-Based Authenticated Key-Exchange Protocol for Satellite Communication

  • Yantao, Zhong;Jianfeng, Ma
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.592-599
    • /
    • 2010
  • In recent years, significant improvements have been made to the techniques used for analyzing satellite communication and attacking satellite systems. In 2003, a research team at Los Alamos National Laboratory, USA, demonstrated the ease with which civilian global positioning system (GPS) spoofing attacks can be implemented. They fed fake signals to the GPS receiver so that it operates as though it were located at a position different from its actual location. Moreover, Galileo in-orbit validation element A and Compass-M1 civilian codes in all available frequency bands were decoded in 2007 and 2009. These events indicate that cryptography should be used in addition to the coding technique for secure and authenticated satellite communication. In this study, we address this issue by using an authenticated key-exchange protocol to build a secure and authenticated communication channel for satellite communication. Our protocol uses identity-based cryptography. We also prove the security of our protocol in the extended Canetti-Krawczyk model, which is the strongest security model for authenticated key-exchange protocols, under the random oracle assumption and computational Diffie-Hellman assumption. In addition, our protocol helps achieve high efficiency in both communication and computation and thus improve security in satellite communication.