• Title/Summary/Keyword: failure zone

Search Result 577, Processing Time 0.025 seconds

Seismic response of steel reinforced concrete spatial frame with irregular section columns under earthquake excitation

  • Xue, Jianyang;Zhou, Chaofeng;Liu, Zuqiang;Qi, Liangjie
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.337-347
    • /
    • 2018
  • This paper presents some shaking table tests conducted on a 1/4-scaled model with 5-story steel reinforced concrete (SRC) spatial frame with irregular section columns under a series of base excitations with gradually increasing acceleration peaks. The test frame was subjected to a sequence of seismic simulation tests including 10 white noise vibrations and 51 seismic simulations. Each seismic simulation was associated with a different level of seismic disaster. Dynamic characteristic, strain response, acceleration response, displacement response, base shear and hysteretic behavior were analyzed. The test results demonstrate that at the end of the loading process, the failure mechanism of SRC frame with irregular section columns is the beam-hinged failure mechanism, which satisfies the seismic code of "strong column-weak beam". With the increase of acceleration peaks, accumulated damage of the frame increases gradually, which induces that the intrinsic frequency decreases whereas the damping ratio increases, and the peaks of acceleration and displacement occur later. During the loading process, torsion deformation appears and the base shear grows fast firstly and then slowly. The hysteretic curves are symmetric and plump, which shows a good capacity of energy dissipation. In summary, SRC frame with irregular section columns can satisfy the seismic requirements of "no collapse under seldom earthquake", which indicates that this structural system is suitable for the construction in the high seismic intensity zone.

Structural behaviour of HFRC beams retrofitted for shear using GFRP laminates

  • Vinodkumar, M.;Muthukannan, M.
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.79-85
    • /
    • 2017
  • This paper summarizes the experimental study of the shear behaviour of Hybrid Fibre Reinforced Concrete (HFRC) beams retrofitted by using externally bonded Glass Fibre Reinforced Polymer (GFRP) laminates. To attain the set-out objectives of the present investigation, steel fibre of 1% and polypropylene fibre of 0.30% was used for hybrid steel-polypropylene fibre reinforced concrete: whereas for hybrid glass-polypropylene fibre reinforced concrete, glass fibre by 0.03% and polypropylene fibre of 0.03% by volume of concrete was used. In this study, 9 numbers of beams were cast and tested into three groups (Group I, II & III). Each group containing 3 numbers of beams, out of which one serve as a control beam or a hybrid steel-polypropylene fibre reinforced concrete beam or a hybrid glass - polypropylene fibre reinforced concrete beam and the remaining two beams were preloaded until shear cracks appeared up to 75% of ultimate load and then preloaded beams (damaged beams) were retrofitted with GFRP laminates at shear zone in the form of strips, as one beam in vertical position and another beam in inclined position to restrict the shear cracks. Finally, the retrofitted beams were loaded until failure and test results were compared. The experimental tests have been conducted to investigate various parameters of structural performance, such as load carrying capacity, crack pattern and failure modes, load-deflection responses and ductility relations. The test results revealed that beams retrofitted using GFRP laminates considerably increased the load carrying capacity. In addition, it was found that beams retrofitted with inclined strip offers superior performance than vertical one. Comparing the test results, it was observed that hybrid steel-polypropylene fibre reinforced concrete beam retrofitted with GFRP laminates showed enhanced behaviour as compared to other tested beams.

Ground Behavior around Tunnel Using Tunnel-shaped Trapdoor Model Test (터널형상의 Trapdoor 모형실험을 통한 지반 거동에 관한 연구)

  • Han, Young-Chul;Kim, Sang-Hwan;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.65-80
    • /
    • 2014
  • This study conducted Trapdoor tests with actual tunnel shape, investigated the mechanical behavior of ground and loosening load on tunnels, and evaluated the mechanism of progressive failure by numerical simulation. The loosening load sharply decreased initially, but it generally increased and reached the stabilized level exhibiting the arching effect, and loose sand showed relatively higher values than those of dense sand. The shear band started from the tunnel shoulder with $63^{\circ}$ (loose sand) to $69^{\circ}$ (dense sand), and gently curved inward to the ground surface. The widths of shear band formation above the tunnel showed a range from 1.8b to 1.9b (b=Tunnel width), which are similar to those values calculated from existing formular. The vertical height of this shear band for deep tunnel was turned out to be a bit lower than that from existing studies (3.0*Tunnel Height).

Seismic performance of high strength steel frames with variable eccentric braces based on PBSD method

  • Li, Shen;Wang, Ze-yu;Guo, Hong-chao;Li, Xiao-lei
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.527-542
    • /
    • 2020
  • In traditional eccentrically braced steel frames, damages and plastic deformations are limited to the links and the main structure members are required tremendous sizes to ensure elasticity with no damage based on the force-based seismic design method, this limits the practical application of the structure. The high strength steel frames with eccentric braces refer to Q345 (the nominal yield strength is 345 MPa) steel used for links, and Q460 steel utilized for columns and beams in the eccentrically brace steel frames, the application of high strength steels not only brings out better economy and higher strength, but also wider application prospects in seismic fortification zone. Here, the structures with four type eccentric braces are chosen, including K-type, Y-type, D-type and V-type. These four types EBFs have various performances, such as stiffness, bearing capacity, ductility and failure mode. To evaluate the seismic behavior of the high strength steel frames with variable eccentric braces within the similar performance objectives, four types EBFs with 4-storey, 8-storey, 12-storey and 16-storey were designed by performance-based seismic design method. The nonlinear static behavior by pushover analysis and dynamic performance by time history analysis in the SAP2000 software was applied. A total of 11 ground motion records are adopted in the time history analysis. Ground motions representing three seismic hazards: first, elastic behavior in low earthquake hazard level for immediate occupancy, second, inelastic behavior of links in moderate earthquake hazard level for rapid repair, and third, inelastic behavior of the whole structure in very high earthquake hazard level for collapse prevention. The analyses results indicated that all structures have similar failure mode and seismic performance.

Seismic performance of precast joint in assembled monolithic station: effect of assembled seam shape and position

  • Liu, Hongtao;Du, Xiuli
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.611-621
    • /
    • 2019
  • Precast concrete structure has many advantages, but the assembled seam will affect potentially the overall seismic performance of structure. Based on the sidewall joint located in the bottom of assembled monolithic subway station, the main objectives of this study are, on one hand to present an experimental campaign on the seismic behavior of precast sidewall joint (PWJ) and cast-in-place sidewall joint (CWJ) subjected to low-cycle repeated loading, and on the other hand to explore the effect of shape and position of assembled seam on load carrying capacity and crack width of precast sidewall joint. Two full-scale specimens were designed and tested. The important index of failure pattern, loading carrying capacity, deformation performance and crack width were evaluated and compared. Based on the test results, a series of different height and variably-shape of assembled seam of precast sidewall joint were considered. The test and numerical investigations indicate that, (1) the carrying capacity and deformation capacity of precast sidewall and cast-in-place sidewall were very similar, but the crack failure pattern, bending deformation and shearing deformation in the plastic hinge zone were different obviously; (2) the influence of the assembled seam should be considered when precast underground structures located in the aquifer water-bearing stratum; (3) the optimal assembled seam shape and position can be suggested for the design of precast underground concrete structures according to the analysis results.

New Methods of Finite Element Postprocessing for Elasto-Plastic Behavior (탄소성 거동의 유한요소해석 후처리 방법)

  • Lee, Jae-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.487-499
    • /
    • 2009
  • The postprocessing technology has been advanced diversely to accommodate the tendency of increasingly refined and complicated practices of finite element modeling in pace with enhanced capabilities of computers and improved algorithm of equation solvers. As a result of such progresses in both hardware and software, it became practically meaningful to inspect and analyze the elasto-plastic behavior using the intermediate results from the increasing number of incremental and iterative processes. This paper is concerned about the new methods of postprocessing with computer graphic visualization of elasto-plastic behavior on the basis of the theoretically reorganized analysis results. This paper proposes a new method of rendering the plastic zone, and new approaches of analyzing and interpreting the elasto-plastic behavior using the graphical information visualized in the form of the yield surface and the stress path, or in the form of the Mohr circles and the failure envelope.

An Experimental Study on the Reinforcement of Low-Rise RC Structure for Seismic Performance (저층 RC 건물의 내진성능 보강에 관한 실험적 연구)

  • Kim, Dongbaek;Lee, Byeonghoon;Kwon, Soondong;Lee, Induk
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.2
    • /
    • pp.144-149
    • /
    • 2016
  • Nowaday, most of the low-rise concrete structures which have less than five stories were built before the intensified seismic code was established 2005. According to the fact that our country is not a safety zone ay more, studies are need to reinforce the seismic performance of that structures. The basic frame of low-rise structure are consist of beams and columns with partition walls, therefore that are very weak about secondary wave of earthquake because of the high stiffness. The partition wall are consist of open channel for sunlight or ventilation and intermediate wall. The intermediate walls will enhance the stiffness of columns, but will cause shear failure with short column effects because of the reduced effective depth. But we don't have studies and adequate design code for partition wall effects, therefore some more studies are need for these facts.

A Study on the Stress Relief Cracking of HSLA-100 and HY-100 Steels (HSLA-100강 및 HY-100강의 응력제거처리 균열에 관한 연구)

  • 박태원;심인옥;김영우;강정윤
    • Proceedings of the KWS Conference
    • /
    • 1996.05a
    • /
    • pp.186-189
    • /
    • 1996
  • A study was made to examine the characteristics of base metal and stress relief cracking(SRC) of heat affected zone(HAZ) for HY-100 and Cu-bearing HSLA-100 steels. The Gleeble thermal/mechanical simulator was used to simulate the SRC/HAZ. The details of mechanical properties of base plate and SRC tested specimens were studied. The specimens were aged at $650^{\circ}C$ for HSLA-100 steel and at 66$0^{\circ}C$ for HY-100 steel and thermal cycled from 135$0^{\circ}C$ In $25^{\circ}C$ with a cooling time of $\Delta$ $t_{800^{\circ}50}$ $0^{\circ}C$/=21sec. corresponds to the heat input of 30kJ/cm. The thermal cycled specimens were stressed to a predetermined level of 248~600MPa and then reheated to the stress relief temperatures of 570~62$0^{\circ}C$. The time to failure( $t_{f}$) at a given stress level was used as a measure of SRC susceptibility. The strength, elongation and impact toughness of base plate were greater in HSLA-100 steel than in HY-100 steel. The time to failure was decreased with increasing temperature and/or stress. HSLA-100 steel was more susceptible to stress relief cracking than HY-100 steel under same conditions. It is thought to be resulted from the precipitation of $\varepsilon$-Cu phase by dynamic self diffusion of solute atoms. Therefore, greater strain concentration at grain boundary of HSLA-100 steel results in the increased SRC susceptibility.y.

  • PDF

Analysis of Microstructure for Resistance Spot Welded TRIP Steels using Atomic Force Microscope (원자력간 현미경을 이용한 TRIP강 저항 점용접부의 미세조직 분석에 관한 연구)

  • Choi, Chul Young;Ji, ChangWook;Nam, Dae-Geun;Jang, Jaeho;Kim, Soon Kook;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • The spot welds of Transformation Induced Plasticity (TRIP) steels are prone to interfacial failure and narrow welding current range. Hard microstructures in weld metal and heat affected zone arenormally considered as one of the main reason to accelerate the interfacial failure mode. There fore, detailed observation of weld microstructure for TRIP steels should be made to ensure better weld quality. However, it is difficult to characterize the microstructure, which has similar color, size, and shape using the optical or electron microscopy. The atomic force microscope (AFM) can help to analyze microstructure by using different energy levels for different surface roughness. In this study, the microstructures of resistance spot welds for AHSS are analyzed by using AFM with measuring the differences in average surface roughness. It has been possible to identify the different phases and their topographic characteristics and to study their morphology using atomic force microscopy in resistance spot weld TRIP steels. The systematic topographic study for each region of weldments confirmed the presence of different microstructures with height of 350nm for martensite, 250nm for bainite, and 150nm for ferrite, respectively.

THE COMPARATIVE STUDY ON THE SHEARBOND STRENGTH AND THE MORPHOLOGY OF RESIN-DENTIN INTERFACE BONDED BY SEVERAL DENTINAL BONDING SYSTEM (수종의 상아질 결합체의 전단강도 및 결합부의 형태에 관한 비교연구)

  • Kim, Yun-Cheol;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.4
    • /
    • pp.867-886
    • /
    • 1996
  • The purpose of this study was to evaluate the shearbond strength and resin-dentin interface of three different dentinal bonding systems in primary and permanent teeth. Thirty extracted human primary molars and premolars, which were non-carious and free of obvious defect, were selected for this study. All specimens were divided into six groups with two groups allocated for each of the three dentinal bonding system(All-bond 2, Scotchbond Multi-Purpose, Gluma bonding system). After completion of bonding composite to dentin using each tested dentin bonding system, bond strength measurement and histological observation were performed. The results are as follows: 1. All-bond 2 and Scotchbond Multi-Purpose, A good quality hybrid layer was identified, the morphology of which could be equated with the zone of H-E and Brown-Brenn staining. In Gluma bonding system, hybrid layer was very thin, and separated from the solid polymer. 2. All-bond 2 had the highest mean shearbond strength, followed by Scotchbond Multi-Purpose and Gluma bonding system in both primary and permanent teeth. There was no statistically significant difference between All-bond 2 and Scotchbond Multi-Purpose. Statistically significant difference could be found between Gluma bonding system and the other two groups(p<0.05). 3. The fracture patterns observed were mainly the mixture of adhesive failure and dentin dettachment pattern in All-bond 2 and Scotchbond Multi-Purpose while adhesive failure prevailed in Gluma bonding system.

  • PDF