• Title/Summary/Keyword: failure zone

Search Result 577, Processing Time 0.024 seconds

Plate Separation (에폭시 접착강판으로 보강된 철근콘크리트 보의 강판단부의 거동특성)

  • 신영수;최완철;홍기섭;홍영균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.374-379
    • /
    • 1994
  • This paper deals with the problem of plate separation and anchorage at the ends of steel plates strengthened by EBSP. Test results show that the reinforced concrete beams strengthened by EBSP occurs the premature failure without the beams achieving their full flexural strength at the end of plates. The premature failure is the cause of stress concentrations in the adhesive layer of plate, reinforced concrete incase of lack of plate length. Then a simple, approximate procedure for predicting the shear and normal stress concentrations is investigated by Robert's the ory based on partial interaction theory. The theoretical results are compared, and show close agreement with test results. A method is derived for determining the plate length that prevents the premature anchorage zone failure

  • PDF

Shearing characteristics of slip zone soils and strain localization analysis of a landslide

  • Liu, Dong;Chen, Xiaoping
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.33-52
    • /
    • 2015
  • Based on the Mohr-Coulomb failure criterion, a gradient-dependent plastic model that considers the strain-softening behavior is presented in this study. Both triaxial shear tests on conventional specimen and precut-specimen, which were obtained from an ancient landslide, are performed to plot the post-peak stress-strain entire-process curves. According to the test results of the soil strength, which reduces from peak to residual strength, the Mohr-Coulomb criterion that considers strain-softening under gradient plastic theory is deduced, where strength reduction depends on the hardening parameter and the Laplacian thereof. The validity of the model is evaluated by the simulation of the results of triaxial shear test, and the computed and measured curves are consistent and independent of the adopted mesh. Finally, a progressive failure of the ancient landslide, which was triggered by slide of the toe, is simulated using this model, and the effects of the strain-softening process on the landslide stability are discussed.

Influence of undercut and surface crack on the stability of a vertical escarpment

  • Banerjee, Sounik K.;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.965-981
    • /
    • 2017
  • Stability of vertical escarpments has been the subject of discussion for long time. However, available literature provides scarce knowledge about the effect of the formation of undercut and surface cracks on the stability of a vertical escarpment. The present study deals with a systematic analysis of the effect of surface cracks and undercut on slope stability using finite element based lower bound limit analysis. In the present analysis, the non-dimensional stability factor (${\gamma}H/c$) is used to inspect the degrading effect of undercut and cracks developed at different offset distances from the edge of the vertical escarpment. Failure patterns are also studied in detail to understand the extent and the type of failure zone which may generate during the state of collapse.

Experimental study on development length of prestressing strand in pretensioned prestressed concrete members (프리텐션 프리스트레스트 콘크리트 부재의 정착길이 평가)

  • Kim, Ui-Seong
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.49
    • /
    • pp.84-91
    • /
    • 2009
  • By bond mechanism between the prestressing strand and the concrete surrounding it, the effective force of prestressing must be transferred to the concrete entirely. The distance required to transfer the effective force of prestressing is called the transfer length, and the development length is the bond length required to anchor the strand as it resists external loads on the member. Transfer length was determined from the concrete strain profile at the level of the strands at transfer and development length was determined from various external loading lengths and compared with current code equation. Through the test results, bond failure is predicted based on the distress caused by cracks when they propagate within the transfer zone of prestressing strand. The current code equation was found to be conservative in comparison with the measured value.

  • PDF

Experimental Study on Development Length of Prestressing Strand in Pretensioned Prestressed Concrete Members (프리텐션 프리스트레스트 콘크리트 부재의 정착길이 정가)

  • Kim, Eui-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.115-121
    • /
    • 2008
  • By bond mechanism between the prestressing strand and the concrete surrounding it, the effective force of prestressing must be transferred to the concrete entirely. The distance required to transfer the effective force of prestressing is called the transfer length, and the development length is the bond length required to anchor the strand as it resists external loads on the member. Transfer length was determined from the concrete strain profile at the level of the strands at transfer and development length was determined from various external loading lengths and compared with current code equation. Through the test results, bond failure is predicted based on the distress caused by cracks when they propagate within the transfer zone of prestressing strand. The current code equation was found to be conservative in comparison with the measured value.

Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer

  • Chen, Shao J.;Yin, Da W.;Jiang, N.;Wang, F.;Guo, Wei J.
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.333-342
    • /
    • 2019
  • Geological dynamic hazards during coal mining can be caused by the failure of a composite system consisting of roof rock and coal layers, subject to different loading rates due to different advancing velocities in the working face. In this paper, the uniaxial compression test simulations on the composite rock-coal layers were performed using $PFC^{2D}$ software and especially the effects of loading rate on the stress-strain behavior, strength characteristics and crack nucleation, propagation and coalescence in a composite layer were analyzed. In addition, considering the composite layer, the mechanisms for the advanced bore decompression in coal to prevent the geological dynamic hazards at a rapid advancing velocity of working face were explored. The uniaxial compressive strength and peak strain are found to increase with the increase of loading rate. After post-peak point, the stress-strain curve shows a steep stepped drop at a low loading rate, while the stress-strain curve exhibits a slowly progressive decrease at a high loading rate. The cracking mainly occurs within coal, and no apparent cracking is observed for rock. While at a high loading rate, the rock near the bedding plane is damaged by rapid crack propagation in coal. The cracking pattern is not a single shear zone, but exhibits as two simultaneously propagating shear zones in a "X" shape. Following this, the coal breaks into many pieces and the fragment size and number increase with loading rate. Whereas a low loading rate promotes the development of tensile crack, the failure pattern shows a V-shaped hybrid shear and tensile failure. The shear failure becomes dominant with an increasing loading rate. Meanwhile, with the increase of loading rate, the width of the main shear failure zone increases. Moreover, the advanced bore decompression changes the physical property and energy accumulation conditions of the composite layer, which increases the strain energy dissipation, and the occurrence possibility of geological dynamic hazards is reduced at a rapid advancing velocity of working face.

Stress Release Zone Around Sub-structure Constructed by Non-open Cut Methods (비개착공법으로 건설된 지하구조물 주변 지반 응력이완영역 규명)

  • Seo, Ho-Sung;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.480-488
    • /
    • 2016
  • For the development of areas around railway lines, subsurface construction using the non-open cut method under the railway has recently been increased. However, when a structure under a railway is constructed, the stress release of the ground is not considered an important factor in the design. In this study, laboratory tests were conducted to determine a zone of stress relaxation. Field tests using an inclinometer were performed to measure the horizontal displacement of the ground during non-open cut construction. The stress release zone and the subgrade stiffness were investigated by numerical analysis. The results of the laboratory tests indicated that the failure zone in the ground was similar to a Rankine's active earth pressure zone. The measured data from the inclinometer in the field tests showed that displacements started when a steel pipe was pushed into the ground. The results of numerical analysis show that lateral earth pressure was also close to Rankine's active earth pressure. The roadbed support stiffness of the soil around the structure decreased to 40% of the original value. The ground around the subsurface structure constructed using nonopen cut methods should be reinforced to maintain the running stability of train.

Fatigue Assessment of Reactor Vessel Outlet Nozzle Weld Considering the LBZ and Welding Residual Stress Effect (국부 취화부와 용접 잔류응력 효과를 고려한 원자로 출구노즐 용접부의 피로강도 평가)

  • Lee, Se-Hwan
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.48-56
    • /
    • 2006
  • The fatigue strength of the welds is affected by such factors as the weld geometry, microstructures, tensile properties and residual stresses caused by fabrication. It is very important to evaluate the structural integrity of the welds in nuclear power plant because the weldment undergoes the most of damage and failure mechanisms. In this study, the fatigue assessments for a reactor vessel outlet nozzle with the weldment to the piping system are performed considering the welding residual stresses as well as the effect of local brittle zone in the vicinity of the weld fusion line. The analytical approaches employed are the microstructure and mechanical properties prediction by semi-analytical method, the thermal and stress analysis including the welding residual stress analysis by finite element method, the fatigue life assessment by following the ASME Code rules. The calculated results of cumulative usage factors(CUF) are compared for cases of the elastic and elasto-plastic analysis, and with or without residual stress and local brittle zone effects, respectively. Finally, the fatigue life of reactor vessel outlet nozzle weld is slightly affected by the local brittle zone and welding residual stresses.

Design of RC T-type Pier Coping Using Strut-and-Tie Model (스트럿-타이 모델에 의한 콘크리트 T형 교각 코핑부의 설계)

  • Jung, Kwang-Hoe;Shim, Byul;Song, Ha-Won;Byun, Keun-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.617-622
    • /
    • 2000
  • In this study, effective compressive strength and nodal zone of Strut-and-Tie Model are studied to propose a new design method for RC T-type pier coping for prevention of sudden brittle failure. The coping which transmits loads of bridge to pier should be properly designed to retain ductile behavior. In order to carry out this proper design using STM, tie must yield before concrete fails, and a stress at strut should not exceed a certain effective stress. Therefore, reasonable determination of the effective compressive strength of strut by considering stress states at the nodal zone exactly is very important. Since conventional STM is applied under assumption that all nodes are under hydrostatic stress state, actual non-hydrostatic stress state in nodal zone caused by geometrical characteristics, loading conditions, support conditions of structures can not be considered properly. In order to apply STM for design of RC T-type pier coping, the non-hydrostatic stress state of nodal zone is considered and effective compressive strength is proposed. Then, a new design method of RC T-type pier coping which applies the principle of superposition to obtain optimum ductile behavior is rationally designed.

  • PDF

Thermal Fatigue Properties of Synthetic Beat Affected Zone in Ferritic Stainless Steel (페라이트계 스테인리스강의 재현 용접열영향부 열피로 특성)

  • Hong, S.G.;Cho, M.H.;Kang, K.B.
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.79-84
    • /
    • 2009
  • Ferritic stainless steel, which has been used as material for decoration parts in automobile, is recently used as material for the exhaust system due to its good performance at high temperature. To improve the fuel efficiency and purify automotive exhaust gas, it is needed to increase the temperature of exhaust gas. However, it is frequently reported that the rising of the temperature of exhaust gas increases thermal stress at exhaust manifold, which results in thermal fatigue failure in welded joints. Therefore, in this study, effects of chemical composition of steel and welding parameters on thermal fatigue properties of synthetic heat affected zone in ferritic stainless steel have been investigated. It has been found that thermal fatigue life in heat affected zone is affected by bead shape of welded joint and amount of soluble Nb in steel. Especially, Nb-Ti added steel has higher thermal fatigue life in comparison to Nb added steel, which is attributed to difference of precipitation behavior in both steels.