• Title/Summary/Keyword: failure testing

Search Result 1,208, Processing Time 0.028 seconds

Comparative field tests on uplift behavior of straight-sided and belled shafts in loess under an arid environment

  • Qian, Zeng-zhen;Lu, Xian-long;Yang, Wen-zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.141-160
    • /
    • 2016
  • This study elucidates the uplift behaviors of the straight-sided and belled shafts. The field uplift load tests were carried out on 18 straight-sided and 15 belled shafts at the three collapsible loess sites under an arid environment on the Loess Plateau in Northwest China. Both the site conditions and the load tests were documented comprehensively. In general, the uplift load-displacement curves of the straight-sided and belled shafts approximately exhibited an initial linear, a curvilinear transition, and a final linear region, but did not provide a well defined peak or asymptotic value of the load, and therefore their uplift resistances should be interpreted from the load test results using an appropriate criterion. Nine representative uplift resistance interpretation criteria were used to define the "interpreted failure load" for each of the load tests, and all of these interpreted uplift resistances were normalized by the failure threshold, $T_{L2}$, obtained using the $L_1-L_2$ method. These load test data were compared statistically and graphically. For the straight-sided and belled shafts, the normalized uplift load-displacement curves were respectively established by the plots that related the mean interpreted uplift resistance ratio against the mean displacement at the corresponding interpreted criteria, and the comparisons of the normalized load-displacement curves were made. Specific recommendations for the designs of uplift belled and straight-sided shafts in the loess were given, in terms of both capacity and displacement.

Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall

  • De Canio, Gerardo;de Felice, Gianmarco;De Santis, Stefano;Giocoli, Alessandro;Mongelli, Marialuisa;Paolacci, Fabrizio;Roselli, Ivan
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.53-71
    • /
    • 2016
  • Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.

A Case Study on Reliability Growth Analysis for a missile System composed of All-Up-Round Missile and Launcher (유도탄 및 발사체계로 구성된 유도무기체계의 신뢰도 성장 분석 사례 연구)

  • Jo, Boram
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.329-335
    • /
    • 2019
  • Reliability growth analysis was conducted for a guided weapons system. In the development phase, reliability management activities were continuously carried out by identifying failure modes and causes and analyzing faults found during the testing. The missile system consists of an all-up-round missile and a launcher, and the analysis was carried out according to the test results of each system. The test results for the all-up-round missile were obtained with discrete data, which were success and failure as a one-shot-device. The test results for the launcher were obtained with continuous data by operating the equipment continuously in the test. For each test result, the reliability growth model was applied to the Standard Gompertz model and the Crow-Extended model. The models were used to identify the growth analysis results of the test so far. It was also possible to predict the reliability growth results by assuming the future test results. The study results could be useful in achieving the desired reliability goal and in determining the number of tests. Then, the planned test will be confirmed and the growth analysis of the missile system will continuously be conducted.

Effects of different surface treatments on the shear bond strength of veneering ceramic materials to zirconia

  • Abdullah, Adil Othman;Hui, Yu;Sun, Xudong;Pollington, Sarah;Muhammed, Fenik Kaml;Liu, Yi
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.1
    • /
    • pp.65-74
    • /
    • 2019
  • PURPOSE. To evaluate and compare the effect of different materials and techniques on the shear bond strength of veneering ceramic materials to zirconia. MATERIALS AND METHODS. 136 sintered zirconia cubes were prepared and randomly divided into four study groups according to corresponding methods of surface treatment and materials: GLN (grinding followed by laser scanning using Noritake Cerabien ZR), SLN (sandblasting followed by laser scanning using Noritake Cerabien ZR), GLV (grinding followed by laser scanning using VITA VM 9), and SLV (sandblasting followed by laser scanning using VITA VM 9). Spraying technique was performed to coat the core. Profilometer, SEM, XRD, EDS, universal testing machine, and stereomicroscope were used to record surface roughness Ra, surface morphology, phase transformation, elemental compositions, shear bond strength SBS values, and failure types, respectively. Specimens were investigated in unaged (not immersed in artificial saliva) and aged (stored in artificial saliva for a month) conditions to evaluate SBS values. RESULTS. Grinding and GLN as first and second surface treatments provided satisfactory Ra values in both conditions ($1.05{\pm}0.24{\mu}m$, $1.30{\pm}0.21{\mu}m$) compared to sandblasting and other groups (P<.05). The group GLN showed the highest SBS values in both conditions ($30.97{\pm}3.12MPa$, $29.09{\pm}4.17MPa$), while group SLV recorded the lowest ($23.96{\pm}3.60MPa$, $22.95{\pm}3.68Mpa$) (P<.05). Sandblasting showed phase transformation from t-m. Mixed failure type was the commonest among all groups. CONCLUSION. GLN showed to be a reliable method which provided satisfactory bond strength between the veneer ceramic and zirconia. This method might preserve the integrity of fixed dental crowns.

Effect of glide path preparation with PathFile and ProGlider on the cyclic fatigue resistance of WaveOne nickel-titanium files

  • Uslu, Gulsah;Inan, Ugur
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.2
    • /
    • pp.22.1-22.8
    • /
    • 2019
  • Objectives: The aim of this study was to investigate the effect of glide path preparation with PathFile and ProGlider nickel-titanium (NiTi) files on the cyclic fatigue resistance of WaveOne NiTi files. Materials and Methods: Forty-four WaveOne Primary files were used and divided into four groups (n = 11). In the first group (0 WaveOne), the WaveOne Primary files served as a control group and were not used on acrylic blocks. In the 1 WaveOne Group, acrylic blocks were prepared using only WaveOne Primary files, and in the PF+WaveOne group and PG+WaveOne groups, acrylic blocks were first prepared with PathFile or ProGlider NiTi files, respectively, followed by the use of WaveOne Primary files. All the WaveOne Primary files were then subjected to cyclic fatigue testing. The number of cycles to failure was calculated and the data were statistically analyzed using one-way analysis of variance (ANOVA) and the Tukey honest significant difference multiple-comparison test at a 5% significance level. Results: The highest number of cycles to failure was found in the control group, and the lowest numbers were found in the 1 WaveOne group and the PF+WaveOne group. Significant differences were found among the 1 WaveOne, PF+WaveOne, and control groups (p < 0.05). No statistically significant differences were found between the PG+WaveOne group and the other three groups (p > 0.05). Conclusion: Glide path preparation with NiTi rotary files did not affect the cyclic fatigue resistance of WaveOne Primary files used on acrylic blocks.

Goodness of Fit Tests for the Exponential Distribution based on Multiply Progressive Censored Data (다중 점진적 중도절단에서 지수분포의 적합도 검정)

  • Yun, Hyejeong;Lee, Kyeongjun
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2813-2827
    • /
    • 2018
  • Progressive censoring schemes have become quite popular in reliability study. Under progressive censored data, however, some units can be failed between two points of observation with exact times of failure of these units unobserved. For example, loss may arise in life-testing experiments when the failure times of some units were not observed due to mechanical or experimental difficulties. Therefore, multiply progressive censoring scheme was introduced. So, we derives a maximum likelihood estimator of the parameter of exponential distribution. And we introduced the goodness-of-fit test statistics using order statistic and Lorenz curve. We carried out Monte Carlo simulation to compare the proposed test statistics. In addition, real data set have been analysed. In Weibull and chi-squared distributions, the test statistics using Lorenz curve are more powerful than test statistics using order statistics.

Interfacial Reaction and Mechanical Property of BGA Solder Joints with LTCC Substrate (LTCC기판과 BGA 솔더접합부의 계면반응 및 기계적 특성)

  • Yoo, Choong-Sik;Ha, Sang-Su;Kim, Bae-Kyun;Jang, Jin-Kyu;Seo, Won-Chan;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.202-208
    • /
    • 2009
  • The effects of aging time on the microstructure and shear strength of the Low Temperature Co-fired Ceramic (LTCC)/Ag pad/Electroless Nickel Immersion Gold (ENIG)/BGA solder joints were investigated through isothermal aging at $150^{\circ}C$ for 1000 h with conventional Sn-37Pb and Sn-3Ag-0.5Cu. $Ni_3Sn_4$ intermetallic compound (IMC) layers was formed at the interface between Sn-37Pb solder and LTCC substrate as-reflowed state, while $(Ni,Cu)_3Sn_4$ IMC layer was formed between Sn-3Ag-0.5Cu solder and LTCC substrate. Additional $(Cu,Ni)_6Sn_5$ layer was found at the interface between the $(Ni,Cu)_3Sn_4$ layer and Sn-3Ag-0.5Cu solder after aging at $150^{\circ}C$ for 500 h. Thickness of the IMC layers increased and coarsened with increasing aging time. Shear strength of both solder joints increased with increasing aging time. Failure mode of BGA solder joints with LTCC substrate after shear testing revealed that shear strength of the joints depended on the adhesion between Ag metallization and LTCC. Fracture mechanism of Sn-37Pb solder joint was a mixture of ductile and pad lift, while that of Sn-3Ag-0.5Cu solder joint was a mixture of ductile and brittle $(Ni,Cu)_3Sn_4$ IMC fracture morphology. Failure mechanisms of LTCC/Ag pad/ENIG/BGA solder joints were also interpreted by finite element analyses.

Numerical Investigation of the Progressive Failure Behavior of the Composite Dovetail Specimens under a Tensile Load (인장하중을 받는 복합재료 도브테일 요소의 점진적인 파손해석)

  • Park, Shin-Mu;Noh, Hong-Kyun;Lim, Jae Hyuk;Choi, Yun-Hyuk
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.337-344
    • /
    • 2021
  • In this study, the progressive failure behavior of the composite fan blade dovetail element under tensile loading is numerically investigated through finite element(FE) simulation. The accuracy of prediction by FE simulation is verified through tensile testing. The dovetail element is one of the joints for coupling the fan blade with the disk in a turbofan engine. The dovetail element is usually made of a metal material such as titanium, but the application of composite material is being studied for weight reduction reasons. However, manufacturing defects such as drop-off ply and resin pocket inevitably occur in realizing complex shapes of the fan blade made by composite materials. To investigate the effect of these manufacturing defects on the composite fan blade dovetail element, we performed numerical simulation with FE model to compare the prediction of the FE model and the tensile test results. At this time, the cohesive zone model is used to simulate the delamination behavior. Finally, we found that FE simulation results agree with test results when considering thermal residual stress and through-thickness compression enhancement effect.

Comparative evaluation of shear bond strength of orthodontic brackets bonded to three-dimensionally-printed and milled materials after surface treatment and artificial aging

  • Ameer Biadsee;Ofir Rosner;Carol Khalil;Vanina Atanasova;Joel Blushtein;Shifra Levartovsky
    • The korean journal of orthodontics
    • /
    • v.53 no.1
    • /
    • pp.45-53
    • /
    • 2023
  • Objective: This study aimed to evaluate the shear bond strength (SBS) of orthodontic brackets bonded to three-dimensionally (3D)-printed materials after various surface treatments and artificial aging compared with that bonded to computer-aided design/computer-aided manufacturing (CAD-CAM) polymethyl methacrylate (PMMA)-milled materials. Methods: Eighty cylindrical specimens were 3D printed and divided into the following four subgroups (n = 20 each) according to the surface treatment and artificial aging procedure. Group A, sandblasted with 50 ㎛ aluminum oxide particles (SA) and aging; group B, sandblasted with 30 ㎛ silica-coated alumina particles (CO) and aging; group C, SA without aging; and group D, CO without aging. For the control group, 20 CAD-CAM PMMA-milled cylindrical specimens were sandblasted with SA and aged. The SBS was measured using a universal testing machine (0.25 mm/min), examined at ×2.5 magnification for failure mode classification, and statistically analyzed (p = 0.05). Results: The retention obtained with the 3D-printed materials (groups A-D) was higher than that obtained with the PMMA-milled materials (control group). However, no significant difference was found between the study and control groups, except for group C (SA without aging), which showed significantly higher retention than the control group (PMMA-SA and thermocycling) (p = 0.037). Study groups A-D predominantly exhibited a cohesive specimen mode, indicating specimen fracture. Conclusions: Orthodontic brackets bonded to 3D-printed materials exhibit acceptable bonding strengths. However, 3D-printed materials are prone to cohesive failure, which may result in crown fractures.

New energy partitioning method in essential work of fracture (EWF) concept for 3-D printed pristine/recycled HDPE blends

  • Sukjoon Na;Ahmet Oruc;Claire Fulks;Travis Adams;Dal Hyung Kim;Sanghoon Lee;Sungmin Youn
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • This study explores a new energy partitioning approach to determine the fracture toughness of 3-D printed pristine/recycled high density polyethylene (HDPE) blends employing the essential work of fracture (EWF) concept. The traditional EWF approach conducts a uniaxial tensile test with double-edge notched tensile (DENT) specimens and measures the total energy defined by the area under a load-displacement curve until failure. The approach assumes that the entire total energy contributes to the fracture process only. This assumption is generally true for extruded polymers that fracture occurs in a material body. In contrast to the traditional extrusion manufacturing process, the current 3-D printing technique employs fused deposition modeling (FDM) that produces layer-by-layer structured specimens. This type of specimen tends to include separation energy even after the complete failure of specimens when the fracture test is conducted. The separation is not relevant to the fracture process, and the raw experimental data are likely to possess random variation or noise during fracture testing. Therefore, the current EWF approach may not be suitable for the fracture characterization of 3-D printed specimens. This paper proposed a new energy partitioning approach to exclude the irrelevant energy of the specimens caused by their intrinsic structural issues. The approach determined the energy partitioning location based on experimental data and observations. Results prove that the new approach provided more consistent results with a higher coefficient of correlation.