• Title/Summary/Keyword: failure strain

Search Result 1,474, Processing Time 0.026 seconds

A tensile criterion to minimize FE mesh-dependency in concrete beams under blast loading

  • Gang, HanGul;Kwak, Hyo-Gyoung
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • This paper focuses on the mesh-size dependency in numerical simulations of reinforced concrete (RC) structures subjected to blast loading. A tensile failure criterion that can minimize the mesh-dependency of simulation results is introduced based on the fracture energy theory. In addition, conventional plasticity based damage models for concrete such as the CSC model and the HJC model, which are widely used for blast analyses of concrete structures, are compared with the orthotropic model that adopts the introduced tensile failure criterion in blast tests to verify the proposed criterion. The numerical predictions of the time-displacement relations at the mid-span of RC beams subjected to blast loading are compared with experimental results. The analytical results show that the numerical error according to the change in the finite element mesh size is substantially reduced and the accuracy of the numerical results is improved by applying a unique failure strain value determined by the proposed criterion.

Isotropic Compression Triaxial Test of Deformation Modulus of Unsaturated soils (불포화토의 등방압축 삼축시험시 변형계수에 관한 연구)

  • Lee, Jong-Pil;Oh, Se-Boong;Kim, Tae-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.132-135
    • /
    • 2009
  • In order study, experimental stress-strain relationships were achieved for various suctions by triaxial tests. A failure envelop was occurred on a plane in p-q-$\psi$ space, since the level of matric suction is in the small range. It was found that the failure criteria could be defined uniquely by the Bishop stress and were also independent of matric suctions. At the level of small strain, deformation moduli were evaluated according to matric suctions by fitting to Ramberg-Osgood model. It was found that deformation moduli increase as matric suctions increase.

  • PDF

Non-uniform Failure in Superplastic Ti-6Al-4V Alloy (초소성 Ti-6Al-4V 합금에서의 불균일 파손)

  • 김태원
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.663-669
    • /
    • 2000
  • A material model has been presented, at the continuum level, for the representation of superplastic deformation coupled with microstructural evolution. The model presented enables the effects of the spatial variation of distributions of grain size to be predicted at the process level. The model has been tested under conditions of both homogeneous and inhomogeneous stress and strain by carrying out detailed comparison of predicted distributions of grain size and their evolutions with experimentally obtained data. Experimental measurements have shown the extent of the spatial variation of the distribution of grain size that exists in the titanium alloy, Ti-6Al-4V. It is shown that whilst not large, the variations in grain size distributions are sufficient to lead to the development of inhomogeneous deformation in test pieces, which ultimately result in localisation of strain and failure.

  • PDF

Flexural Behavior of RC Beams Strengthened with CFRP Strips (탄소섬유판으로 보강된 RC보의 휨 거동)

  • Choi, Ki-Sun;You, Young-Chan;Park, Young-Hwan;Park, Jong-Sup;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.287-290
    • /
    • 2005
  • CFRP strips manufactured in factory are produced normally with smaller width and larger thickness than CFRP sheets. By this reason, bonding force between CFRP strips and concrete substrate is not sufficient to sustain tensile force in CFRP strips. Therefore premature debonding failure cannot be avoided when strengthening is done by simply bonding the CFRP strips. The flexural strength of RC beam strengthened with CFRP strips must be calculated based on the effective strain considering debonding failure. This paper presents test results of an experimental study conducted to evaluate the flexural strength on RC beams strengthened with CFRP strips. 7 specimens were tested with respect to bond length and amount of CFRP strips. From the test results, it was indicated that the strain of the CFRP strips achieved at debonding failure can be decreased less than 6,000$\mu$ depending on the amount of CFRP strips.

  • PDF

Deformation Estimation of Slope Reinforced Materials by Rain and Temperature (사면보강재의 강우 및 온도에 의한 변형 해석)

  • 홍성진;장기태;한희수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.643-650
    • /
    • 2002
  • It is necessary, in the light of the importance of long-term slope stability problem, to develop a simple method or tool which can figure out the possible failure zone resulted from weathering effect and other factors. The FBG sensor system is used to estimate the correlations between the temperature and the slope in Yunhwajae, and to find a failure zone in slopes effectively. This research is to seek for the correlation between the soil temperature distribution and the strain distribution in a active zone by analyzing the data from the in-situ measurement so that the possible failure zone should be well defined based on the correlation. The zone of high temperature fluctuation can be regarded as one of the possible sliding zone due to the weathering effect while the constant temperature depth of the ground, if exists, would not be relatively affected by the weathering process.

  • PDF

Shear bond failure in composite slabs - a detailed experimental study

  • Chen, Shiming;Shi, Xiaoyu;Qiu, Zihao
    • Steel and Composite Structures
    • /
    • v.11 no.3
    • /
    • pp.233-250
    • /
    • 2011
  • An experimental study has been carried out to reveal the shear-bond failure mechanism of composite deck slabs. Thirteen full scale simply supported composite slabs are studied experimentally, with the influence parameters like span length, slab depth, shear span length and end anchorage provided by steel headed studs. A dozen of strain gauges and LVDTs are monitored to capture the strain distribution and variation of the composite slabs. Before the onset of shear-bond slip, the longitudinal shear forces along the span are deduced and found to be proportional to the vertical shear force in terms of the shear-bond strength in the m-k method. The test results are appraised using the current design procedures. Based on the partial shear-bond connection at the ultimate state, an improved method is proposed by introducing two reduction factors to assess the moment resistance of a composite deck slab. The new method has been validated and the results predicted by the revised method agree well with the test results.

Failure simulation of nuclear pressure vessel under severe accident conditions: Part I - Material constitutive modeling

  • Eui-Kyun Park;Ji-Su Kim;Jun-Won Park;Yun-Jae Kim;Yukio Takahashi;Kukhee Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4146-4158
    • /
    • 2023
  • This paper proposes a combined plastic and creep constitutive model of A533B1 pressure vessel steel to simulate progressive deformation of nuclear pressure vessels under severe accident conditions. To develop the model, recent tensile test data covering a wide range of temperatures (from RT to 1,100 ℃) and strain rates (from 0.001%/s to 1.0%/s) was used. Comparison with experimental data confirms that the proposed combined plastic and creep model can well reflect effects of temperature and strain rate on tensile behaviour up to failure. In the companion paper (Part II), the proposed model will be used to simulate OECD lower head failure (OLHF) test data.

The Effects of Pass Strain and Rolling Temperature on Flow Stress and Flow Strain of AA5083 Alloy (AA5083 합금의 고온유동응력 및 연신율에 미치는 압연온도와 패스변형량의 영향)

  • 고병철;박도현;유연철
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.169-177
    • /
    • 1999
  • Different pass strains and rolling temperatures were applied to understand the effects of pass strain and rolling temperature on flow stress and flow strain of AA5083 alloy. The specimens were prepared by conventional casting process followed by hot rolling. Hot torsion tests were conducted at temperature ranges of 350 to 52$0^{\circ}C$ under a strain rate of 1.0/sec. During the process, hot-restoration mechanisms, dynamic recovery(DRV) or dynamic recrystallization (DRX), of the AA5083 alloy were analyzed from the flow curves and deformed microstructures. It was found that while the rolling strain per pass and rolling temperature have little effect on the folw stress, they have significant effect on the failure strain. The DRV was responsible for the hot restoration mechanism of the hot-rolled specimen. heavily elongated grains and small subgrains containing dislocations were obtaned during the hot deformation. This was due to the presence of Al6Mn precipitate in the alloy.

  • PDF

Analysis Method of Ice Load and Ship Structural Response due to Collision of Ice Bergy Bit and Level Ice (유빙 및 평탄빙의 충돌에 의한 빙하중과 선체구조응답 해석기법)

  • Nho, In Sik;Lee, Jae-Man;Oh, Young-Taek;Kim, Sung-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The most important factor in the structural design of ships and offshore structures operating in arctic region is ice load, which results from ice-structure interaction during the ice collision process. The mechanical properties of ice related to strength and failure, however, show very complicated aspect varying with temperature, volume fraction of brine, grain size, strain rate and etc. So it is nearly impossible to establish a perfect material model of ice satisfying all the mechanical characteristics completely. Therefore, in general, ice collision analysis was carried out by relatively simple material models considering only specific aspects of mechanical characteristics of ice and it would be the most significant cause of inevitable errors in the analysis. Especially, it is well-known that the most distinctive mechanical property of ice is high dependency on strain rate. Ice shows brittle attribute in higher strain rate while it becomes ductile in lower strain rate range. In this study, the simulation method of ice collision to ship hull using the nonlinear dynamic FE analysis was dealt with. To consider the strain rate effects of ice during ice-structural interaction, strain rate dependent constitutive model in which yield stress and hardening behaviors vary with strain rate was adopted. To reduce the huge amount of computing time, the modeling range of ice and ship structure were restricted to the confined region of interest. Under the various scenario of ice-ship hull collision, the structural behavior of hull panels and failure modes of ice were examined by nonlinear FE analysis technique.

Evaluation on Fatigue Characteristics of Tire Sidewall Rubber according to Aging Temperature

  • Jun, Namgyu;Moon, Byungwoo;Kim, Yongseok;Koo, Jae-Mean;Seok, Chang-Sung;Hong, Ui Seok;Oh, Min Kyeong;Kim, Seong Rae
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.167-172
    • /
    • 2017
  • Ultra-high performance (UHP) tires, for which demand has recently surged, are subject to severe strain conditions due to the low aspect ratio of their sidewalls. It is important to ensure sidewall material durability, since a sudden tire sidewall breakage during vehicle operation is likely to cause a major accident. In the automotive application of rubber parts, cracking is defined as a failure because when cracks occur, the mechanical properties of rubber change. According to Mars, Andre et al., strain and strain energy density (SED) are mainly used as a failure parameters and the SED is generally used as a fatigue damage parameter. In this study, the fatigue life curves of sidewall rubber of tires were determined by using the SED as fatigue damage parameter while the effect of aging on fatigue life was evaluated after obtaining the SED-Nf curves according to aging condition.