• Title/Summary/Keyword: failure behaviors

Search Result 563, Processing Time 0.024 seconds

The Vicious Cycle of Dieting Failures: The Active-Self Account of the Priming Effect on Unsuccessful Dieters

  • Yoo, Jiah;Shon, Young Woo
    • Science of Emotion and Sensibility
    • /
    • v.17 no.1
    • /
    • pp.13-28
    • /
    • 2014
  • Considerable research in dieting has examined the goal priming effect that promotes successful dieting. However, priming literature found that the process of which priming is led to behaviors involves not only the priming construct itself but the momentary self-concept activated by the priming. Based on this notion, studies examined whether the active self-concept as an "unsuccessful dieter" or "successful dieter" determines the priming-to-behavior effect in dieting. Study 1 used contexts of the prime as manipulation for participants' active-self following the prime and measured their chronic self-concept in dieting (rated on the Perceived Self-Regulation Success [PSRS] in dieting scale) as a moderator. The result supported the active-self account for the effect of the dieting prime. The interaction of the PSRS scores and the priming contexts was found in the dieting behavior of participants. Participants whose chronic self-concept in dieting is unsuccessful (the low PSRS) showed the goal-congruent priming effect only in the condition where the priming context reminded them of their self-concept in favor of dieting success. In the context where their dieting failure in the past became salient, however, the participants with the low PSRS were more likely to succumb to tempting food. In contrast, eating behaviors of the high PSRS participants were independent of the contexts. Study 2 tested a possible mechanism from the active-self to the behaviors. It is concluded that the active-self operates in the priming process by influencing anticipatory thoughts rather than automatic responses toward foods. The implications for understanding repeated dieting failures and designing practical interventions to help dieters are discussed.

A Study on the Main Characteristics and Factors of the Process of Beginning Egress during the Fire at the Buildings - Focus on Overseas Fire Cases including the Japanese - (건축물 화재 시 피난개시과정의 주요 특성 및 요소에 관한 연구 - 일본 등 해외 화재사례를 중심으로 -)

  • Park, Jae-Sung
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.59-68
    • /
    • 2012
  • Predicting occupants' behaviors from the start of the fire to egress and reducing the time required for such process are critical matters that can decide success and failure of safe egress. In this research, research literatures and theories and fire cases were compared and analyzed so as to prepare logical grounds that could predict the process of beginning egress. As a result of this research, there was a significant difference in the time elapsed until people start evacuating due to spatial positions and quarantine from the place from which the fire originated and their auditive and olfactory signs did not recognize the fire instantly and they showed a strong tendency to recognize the fire by visual sign, warning announcement for egress and notice by others. And the results also showed that only a very small minority of occupants evacuated as soon as they perceived the fire and that variation in the time elapsed until evacuation begun for occupants were wider as the size of building was bigger and that accommodations such as hotel had wider variation in the time elapsed regardless of the size of buildings.

Seismic behaviors of ring beams joints of steel tube-reinforced concrete column structure

  • Zhang, Yingying;Pei, Jianing;Huang, Yuan;Lei, Ke;Song, Jie;Zhang, Qilin
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.417-426
    • /
    • 2018
  • This paper presents the seismic behaviors and restoring force model of ring beam joints of steel tube-reinforced concrete column structure under cyclic loading. First, the main failure mode, ultimate bearing capacity, stiffness degradation and energy dissipation capacity are studied. Then, the effects of concrete grade, steel grade, reinforcement ratio and radius-to-width ratios are discussed. Finally, the restoring force model is proposed. Results show that the ring beam joints of steel tube-reinforced concrete column structure performs good seismic performances. With concrete grade increasing, the ultimate bearing capacity and energy dissipation capacity increase, while the stiffness degradation rates increases slightly. When the radius-width ratio is 2, with reinforcement ratio increasing, the ultimate bearing capacity decreases. However, when the radius-to-width ratios are 3, with reinforcement ratio increasing, the ultimate bearing capacity increases. With radius-to-width ratios increasing, the ultimate bearing capacity decreases slightly and the stiffness degradation rate increases, but the energy dissipation capacity increases slightly.

A Study on Trading Behaviors of Individual Investors After the Pandemic: Focus on the KOSDAQ Market (코로나 19 이후 개인투자자의 투자행태에 관한 연구: 코스닥 시장을 중심으로)

  • Kyoung-Woo Sohn;Ji-Yeong Chung
    • Asia-Pacific Journal of Business
    • /
    • v.15 no.3
    • /
    • pp.399-415
    • /
    • 2024
  • Purpose - This study aims to explore trading behaviors of individual investors in the KOSDAQ market, thereby explaining the low profitability of individual investors relative to institutional or foreign investors and comparing features specific to the KOSDAQ market with those of the KOSPI market. Design/methodology/approach - KOSDAQ market data, ranging from 2018-01-03 to 2023-12-28, is obtained from the KRX market data system on a daily basis. 12 sub-periods are generated by dividing the entire dataset into 6-month intervals, and within each sub-period, 25 stock-groups are established by the amount of individual investors' net purchases at 4% intervals. The analysis is conducted by comparing major information on trading behaviors across the sub-periods and across the stock-groups. Findings - First, the ratio of individual investors' net purchases shows a negative correlation with the ratio of net purchases of institutional and foreign investors with a strong statistical significance for all sub-periods, and it exhibits negative correlations with the periodic cumulative returns for the most sub-periods. It is also revealed that the low profitability of individual investors might result from the failure of choosing stocks, unlike the case of the KOSPI market where individual investors' low performance is related to the choice of the timing of transactions, rather than the choice of stocks. Research implications or Originality - The empirical results indicate that individual investors in the KOSDAQ market need to be more prudent in choosing stocks than in the KOSPI market, and imply that rediscovering the benefit of the diversification, especially for the KOSDAQ market, might be substantially meaningful.

Temperature Effect on Tensile Fracture Behavior of Thermoplastic Glass Fiber/Polyethylene Composites (온도변화에 따른 열가소성 복합재료 유리섬유/폴리에틸렌의 인장파괴거동)

  • KOH S. W.;CHOI Y. K.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.326-330
    • /
    • 2004
  • Thermosetting matrix composites have disadvantages in terms of moulding time, repairability and manufacturing cost. Thus the high-performance thermoplastic composites to eliminate such disadvantages have been developed so far. As a result of environmental and economical concerns, there is a growing interest in the use of thermoplastic composites. However, since their mechanical properties are very sensitive to the environment such as moisture, temperature etc., those behaviors need to be studied. Particularly the temperature is a very important factor influencing the mechanical behavior of thermoplastic composites. The effect of temperature have not yet been fully quantified. Since engineering applications of reinforced composites necessitate their fracture mechanics characterization, work is in progress to investigate the fracture and related failure behavior. An approach which predicts the tensile strength was perpormed in the tensile test. The main goal of this work is to study the effect of temperature on the result of tensile test with respect to GF/PE composite. The tensile strength and failure mechanisms of GF/PE composites were investigated in the temperature range $60^{\circ}C\;to\;-50^{\circ}C$. The tensile strength increased as the fiber volume fraction ratio increased. The tensile strength showed the maximum at $-50^{\circ}C$, and it tended to decrease as the temperature increased from $-50^{\circ}C$. The major failure mechanisms was classified into the fiber matrix debonding, the fiber pull-out, the delamination and the matrix deformation.

  • PDF

Nondestructive Characterization of Degradation of EPDM Rubber for Automotive Radiator Hoses (자동차 냉각기 호스용 EPDM고무의 노화에 대한 비파괴 특성평가)

  • Kwak, Seung-Bum;Choi, Nak-Sam;Choi, Youn-Joung;Shin, Sei-Moon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.368-376
    • /
    • 2005
  • Coolant rubber hoses for automobile radiators can be degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under thermal and mechanical loadings. In this study, for EPDM(ethylene-propylene diene monomer) rubber conventionally used as a radiator hose material the aging behaviors of the skin part due to thermo-oxidative and electro-chemical stresses were nondestructively evaluated. Through the thermo-oxidative aging test, it was shown that the surface hardness IRHD(International Rubber Hardness Degrees) of the rubber increased with a considerable reduction of failure strain. On account of the penetration of coolant liquid into the skin part the weight of rubber specimens degraded by electro-chemical degradation(ECD) test increased, whereas their. failure strain and IRHD hardness decreased largely. The penetration of coolant liquid seemed to induce some changes in inner structure and micro hardness distribution of the rubbers. Consequently, EPDM rubbers degraded by thermo-oxidative aging and ECD could be characterized nondestructively by micro-hardness and chemical structure analysis methods.

Transverse Low Velocity Impact Failure Behavior of Triaxial Braided Composite Tube with Different Braiding Angles (Triaxial braiding 기술을 이용한 원형 튜브의 횡방향 저속충격파괴 거동분석)

  • Sim, Ji-hyun;Park, Sung-min;Kim, Ji-hye;Shin, Dong-woo;Chon, Jin-sung;Kim, Jae-kwan;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.28 no.4
    • /
    • pp.246-252
    • /
    • 2016
  • In comparison to metal alloys, braided composite features a high impact resistance and crash energy absorption potential, and also it still remained competitive stiffness and strength properties. Braiding angle is one of the most important parameters which affect the mechanical behaviors of braided composite. This paper presents transverse low velocity impact failure behavior analysis on the carbon 3D triaxial braided composite tube with the braiding angle of $20^{\circ}$, $50^{\circ}$ and $80^{\circ}$. The flexural behaviour of 3D triaxial braided composite tube under bending loads was studied by conducting quasistatic three point bending test. Also, the low velocity impact responses of the braided composite tubes were also tested to obtain load-displacement curves and energy absorption. Consequently, the increase of the braided angle, the peak load also increases owing to the bigger bending stiffness.

Nonlinear Seismic Response and Failure Behavior of reinforced Concrete Shear Wall Subjected to Base Acceleration (지반가속도에 의한 철근콘크리트 전단벽의 비선형 지진응답 및 파괴거동)

  • 유영화;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.21-32
    • /
    • 1999
  • A ground motion resulting from the destructive earthquakes can subject reinforced concrete members to very large forces. The reinforced concrete shear walls are designed as earthquake-resistant members of building structure in order to prevent severe damage due to the ground motions. The current research activities on seismic behavior of reinforced concrete member under ground motions have been limited to the shaking table test or equivalent static cyclic test and the obtained results have been summarized and proposed for the seismic design retrofit of structural columns or shear walls. The present study predicted the seismic response and failure behavior of reinforced concrete shear wall subjected to base acceleration using the finite element method. A decrease in strength and stiffness, yielding of reinforcing bar, and repetition of crack closing and opening due to seismic load with cyclic nature are accompanied by the crack which is necessarily expected to take place in concrete member. In this study the nonlinear material models for concrete and reinforcing bar based on biaxial stress field and algorithm of dynamic analysis were combined to construct the analytical program using the finite element method. The analytical seismic response and failure behaviors of reinforced concrete shear wall subjected to several base accelerations were compared with reliable experimental result.

  • PDF

A Study on the Tensile Fracture Behavior of Glass Fiber Polyethylene Composites (GF/PE 복합재료의 인장파괴거동에 관한 연구)

  • 엄윤성;고성위
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.2
    • /
    • pp.158-163
    • /
    • 2003
  • Thermosetting matrix composites have disadvantages in terms of moulding time, repairability and manufacturing cost. Thus the high-performance thermoplastic composites to eliminate such disadvantages have been developed so far. As a result of environmental and economical concerns, there is a growing interest in the use of thermoplastic composites. However, since their mechanical properties are very sensitive to the environment such as moisture, temperature etc., those behaviors need to be studied. Particularly the temperature is a very important factor influencing the mechanical behavior of thermoplastic composites. The effect of temperature have not yet been fully quantified. Since engineering applications of reinforced composites necessitate their fracture mechanic characterization, work is in progress to investigate the fracture and related failure behavior. An approach which predicts the tensile strength was perpormed in the tensile test. The main goal of this work is to study the effect of temperature on the result of tensile test with respect to GF/PE composite. The tensile strength and failure mechanisms of GF/PE composites were investigated in the temperature range 6$0^{\circ}C$ to -5$0^{\circ}C$. The tensile strength increased as the fiber volume fraction ratio increased. The tensile strength showed the maximum at -5$0^{\circ}C$, and it tended to decrease as the temperature increased from -5$0^{\circ}C$. The major failure mechanism was classified into the fiber matrix debonding, the fiber pull-out, the delamination and the matrix deformation.

A Study on the Engine Oil Resistant Behaviors of Room Temperature Vulcanizing Silicone Adhesives (상온 경화형 실리콘 접착제의 내엔진 오일성에 관한 연구)

  • Park, Soo-Jin;Jin, Fan-Long;Kim, Jong-Hak;Joo, Hyeok-Jong;Kim, Joon-Hyung
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.196-203
    • /
    • 2005
  • In this work, the engine oil resistant evaluation and breakdown analysis of room temperature vulcanizing silicone adhesives were performed through the surface properties, thermal stabilities, adhesive strength, and morphology measurements. As a result, the permeation of engine oil into adhesive specimens was carried out from surface to center in the specimens. And the oil content in the adhesive specimens was increased and the Si-O-Si bond of the adhesives was decomposed with increasing the aging time. The TGA results indicated that the thermal degradation was mainly occurred at under and surfaces of the specimens. The tensile strength, elongation, and adhesive strength of the adhesives were significantly decreased after the engine oil resistant tests, which could be attributed to the initial lose of adhesive properties resulting from the engine oil absorption and thermal aging. And the failure mode of the adhesive specimens was changed from cohesive failure to interfacial failure.