• Title/Summary/Keyword: failure behaviors

Search Result 563, Processing Time 0.024 seconds

Static Behavior of the Prestressed Concrete Deck Slab for Steel-Concrete Composite Two-Girder Bridges (강합성 2거더교 PSC 바닥판의 정적 거동)

  • 김영진;주봉철;이정우;김병석;박성용
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.503-512
    • /
    • 2002
  • Generally, the girder spacing of the two-girder composite bridge is from 5m up to 15m. To ensure the structural safety according to Korean Bridge Design Specification, the deck depth should be from 33 cm upto 73 cm. Using the transversal prestressing strands in concrete deck, we can reduce its depth about 10%. However, there is little experience on the design and construction of prestressed concrete(PSC) decks in Korea. This paper focuses on the behaviors of PSC deck. A literature survey is performed widely. Considering the characteristics of the two-girder bridge and the construction conditions in Korea, a cast-in-place PSC deck is recommended for the two-girder bridge with 6m girder spacing. To examine its structural behaviors and safety, three partial model deck specimens(3 m$\times$5 m) with real scale are fabricated md tested. One(PS34-RS) is 34cm depth with the stiffness restraint in longitudinal edges for simulating the real bridge deck. Another(PS34-NS) is same depth without the stiffness restraint, and the other(PS28-NS) is 28cm depth with the stiffness restraint. Under the static patch loading, each specimen had a larger ultimate flexural strength than the design value. Specimens with the stiffness restraint (PS34-RS and PS28-RS) showed the punching shear failure mode and specimen without that(PS34-NS) showed the flexural failure mode.

FEA for RC Beams Partially Flexural Reinforced with CFRP Sheets (CFRP 시트로 부분 휨 보강된 철근콘크리트 보의 유한요소해석)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Byeong Cheol;Kim, Jaehwan;Jung, Kyu-San
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2020
  • A CFRP sheet has been applied as a structural reinforcement in the field, and various studies are conducted to evaluate the effect of CFRP sheets on reinforced concrete. Although many experiments were performed from previous studies, there are still limitations to analyze structural behaviors with various parameters in experiments directly. This study shows the FEA on structural behaviors of RC beams reinforced with CFRP sheets using ABAQUS software. To simulate debonding failure of CFRP sheets which is a major failure mode of RC beam with CFRP sheets, a cohesive element was applied between the bottom surface of RC beam and CFRP sheets. Both quasi-static method and 2-D symmetric FE model technique were performed to solve nonlinear problems. Results obtained from the FE models show good agreements with experimental results. It was found that reinforcement level of CFRP sheets is closely related to structural behavior of reinforced concrete including maximum strength, initial stiffness and deflection at failure. Also, as over-reinforcement of CFRP sheets could give rise to the brittle failure of RCstructure using CFRP sheets, an appropriate measure should be required when installing CFRP sheets in the structure.

Large Displacement Behaviors of Foam-Insulated Concrete Sandwich Panels Subjected to Uniform Pressure (등분포하중에 종속된 폼내장 콘크리트 샌드위치패널의 유한변위거동)

  • Kang, Jun-Suk;Won, Deok-Hee;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.35-43
    • /
    • 2011
  • This study examined the structural behaviors of foam insulated concrete sandwich panels subjected to uniform pressure. Finite element models were used to simulate the detailed shear resistance of connectors and the nonlinear behaviors of concrete, foam and rebar components. The models were then validated using data from static tests performed at the University of Missouri. Both composite and non-composite action had a significant effect on the response of the foam insulated concrete sandwich panels, indicating that the simulated shear tie resistance should indeed be incorporated in numerical analyses. The modeling approach used here conveniently simulated the structural behaviors during all loading stages (elastic, yielding, ultimate and post-failure) and was compatible with the American Concrete Institute (ACI) Code and existing design practices. The results of this study will therefore provide useful guidelines for the analysis and design of foam insulated sandwich panels under both static and dynamic loadings.

A Study on the Stress Induced Brittle Failure around Openings with Cross-sectional Shape by Scaled Model Test and DEM Simulation (모형시험과 개별요소법을 이용한 단면 형상에 따른 공동 주변 취성파괴에 관한 연구)

  • Bae, Seong-Ho;Jeon, Seok-Won;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.389-410
    • /
    • 2007
  • For moderately jointed to massive rock masses, the failure and deformation behaviors around an excavated opening are absolutely influenced by the initial rock stress and strength of in-situ rock mass. The localized and progressive brittle failure around an opening does not mean whole collapse of an excavated opening. But, for many cases, it may induce temporary stopping of excavation works and reexamination of the current supporting system, which can result in delay of the entire construction works and additional construction cost. In this paper, the characteristics of the brittle failure around an opening with stress level and tunnel shape was studied by the biaxial compressive test using scaled specimen and by the numerical simulation with $PFC^{2D}$. The biaxial test results were well coincided with the stress induced failure patterns around the excavated openings observed and monitored in the in-situ condition. For the circular part of the opening wall, the stress induced cracks initially occurred at the wall surface in the direction of the minimum principal stress and contributed to the localized notch shaped failure region having a certain range of angle. But for the corner and straight part of the opening wall, the cracks initiated at sharp corners were connected and coalesced each other and with existing micro cracks. Further they resulted in a big notch shaped failure region connecting two sharp corners.

Pull-out Behaviors of Headed Bars with Different Details of Head Plates (Head 플레이트 상세에 따른 Headed Bars의 인발거동에 관한 연구)

  • Park, Hyun-Gyoo;Yoon, Young-Soo;Ryoo, Young-Sup;Lee, Man-Seop
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.95-104
    • /
    • 2002
  • This paper presents the pull-out failure mode on Headed Bars and prediction of tensile capacity, as governed by concrete cone failure. 17 different plate types, three different concrete strengths and three different welding types of specimens were simulated. Test variables are the reinforcing bar diameters connected to headed plate (e.g., 16mm, 19mm and 22mm), the head plate shapes (e.g., circular, square, rectangular), the dimensions of head plates (e.g., area and thickness), the types of welding scheme for connection of reinforcing bars and head plates (e.g., general welding and friction welding). Headed Bars were manufactured in different areas, which shape and thickness are based on ASTM 970-98. Calculation of Embedment length in concrete is based on CSA 23.3-94, and static tensile load was applied. Pullout capacities tested were compared to the values determined using current design methods such as ACI-349 and CCD method. If compare experiment results and existings, Headed bar expressed high strength and bigger breakdown radious than standard by wide plate area and anomaly reinforcing rod unlike anchor.

A Study on the Stability of Asymmetrical Twin Tunnels in Alternating Rock Layers Using Scaled Model Tests (호층암반내 비대칭 쌍굴터널의 안정성에 관한 모형실험 연구)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.22-31
    • /
    • 2012
  • In this study, scaled model tests were performed to investigate the stability of an asymmetrical twin tunnels constructed in rock mass comprising alternating layers of sandstone and shale. Each of tunnels had a differently shaped section, where the one was already constructed tunnel including lining structure but the other was planned to be under construction. Four types of test models which had respectively different pillar widths and loading conditions were experimented, where both crack initiating pressures and deformation behaviors around tunnels were investigated. The cracks of pillar mainly began to appear at the interfaces of alternating layers, following additional shear displacement between layers was confirmed as one of the most important factors of pillar failure in case of the model of pillar width 0.5D. The models with shallower pillar widths proved to be unstable because of lower crack initiating pressures and more tunnel convergences than the models with thicker pillar widths. The failure and deformation behaviors of tunnels were also dependent on the loading conditions, where the model of coefficient of lateral pressure 1.0 was more stable than the other model. Futhermore, the results of FLAC analysis were qualitatively coincident with the experimental results.

A Study on Development for Joint of Concrete Filled Steel Tube Column and P.C Reinforced Concrete Beam(2) -The Behaviors Properties of Joint with Key Parameter, such as Strength of Concrete, size of Panel Zone and Axial Force ratio- (콘크리트 충전강관 기둥과 PC 철근 콘크리트 보 접합부의 개발에 관한 연구(2) -콘크리트 강도, 판넬죤의 크기, 축력비를 변수로 한 접합부의 거동 특성-)

  • Park, Jung Min;Lee, Sung Jo;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.107-120
    • /
    • 1997
  • The purpose of this study is to develop composite structural system which is to have versatility in plan design and to improve economical efficieney, to maximise structural capacity than existing structural system. In this viewpoint, it was investigated to the properties of structural behaviors for i oint consisting of concrete filled steel square tube column and P.C reinforced concrete beam through a series of hysteretic behavior experiment. In the previous report, researched to the properties of joints with key parameters. such as Axial Force ratio and section types. From the based on previous results, this study investigated the properties of this joints with key parameters, such as strength of concrete, size of panel zone and Axial Force ratio. The obtained results are summarised as follows. (1) Investigating for the failure mode of the beam-to-column joint, the specimens of S,LL and LH series(except for L5H) presented flexural failure mode. (2) The initial stiffness of joint was increasd as the decrease of axial force ratio and increase of the concrete strength. (3) The rotation resisting capacity was effective as the increment of the concrete strength and decrement of the axial force ratio. (4) The emprical formula to predict the ultimate capacity of joint model to introduce decrease coefficient according to the axial force ratio to superimpose shearing strength of steel web(H section) and bending strength of reinforced concrete beam was expected.

  • PDF

Evaluation on the Behaviors of Precast Concrete Beam-Column Connections for Apartments (공동주택용 프리캐스트 콘크리트 보-기둥 연결부의 거동분석)

  • Song, Hyung-Soo;Yu, Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.657-666
    • /
    • 2006
  • The precast concrete beam-column connectors to retrofit an apartment building were investigated experimentally. Five precast concrete beam-column connectors were considered to develop a modified model which was adapted to domestic construction conditions from the DDC(dywidag ductile connection) of Germany. Special H-shape steel hardware was used to decrease the width of column and beams for the construction of external frames in apartments. It was found that the DDC had high joint strength and ductility, however failed in inclined shear crackings in the columns. The modified one showed better behaviors in tests because they did not show critical column crackings at failure. The test result of modified one with grouting was compared to that of the one without grouting within the duct. The one with grouting showed higher strength and ductility in failure than that without grouting.

New Design Method for Pile Group Under Vertical Load (연직하중을 받는 무리말뚝의 새로운 설계 방법)

  • 이수형;정충기
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.31-40
    • /
    • 2003
  • Current design of pile group is based on the estimation of the overall bearing capacity of a pile group from that of a single pile using a group efficiency. However, the behaviors of a pile group are influenced by various factors such as the method of pile installation, pile-soil-pile interaction, cap-soil-pile interaction, etc. Thus, it is practically impossible to take into account these factors reasonably with the only group efficiency. In this paper, a new method for the design of pile groups is proposed, where the significant factors affecting the behavior of a pile group are considered separately by adopting several efficiencies. Furthermore, in the proposed method, the load transfer characteristics of piles and the difference of pile behaviors with respect to the pile locations in group can be taken into account. The efficiencies for the method are determined using the settlement failure criterion, which is consistent with the concept of allowable settlement fur structures. The efficiencies calculated from the results of existing model tests are presented, and the bearing capacity of a pile group in the other model test is calculated and compared with that from the test result to verify the validity of the proposed method.

Flexural Behaviors of High Performance Hollow Core Slabs with Upper Strands (상부강선을 갖는 고성능 중공슬래브의 휨거동)

  • 김인규;박현석;유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.156-163
    • /
    • 2002
  • Hollow core slabs generally have not been used for a bridge or a parking slab in Korea. In this study, high performance hollow core slabs, which have been the most thick one in domestic are re-designed and examined for practical use. Flexural tests were performed on four 315mm deep hollow core slabs to investigate adaptability for high vehicle live loadings and composite action with topping concrete. The precast slabs were pre-tensioned with ten strands of 1/2 inch diameter at the lower of slab and four strands of 1/2 inch diameter at the upper of slab, and cast with 80 mm deep topping concrete. Tested hollow core slabs showed ductile failure behaviors which were conformed to the current Ultimate Strength Design Method for a span of 10m up to the live load of 1,000 kgf/㎡. The rectangular md round shear cotters which were used for the composite action between precast and topping concrete, developed sufficient strengths because cracking, even micro had not been developed at the end of slabs up to the pure flexural tensile failure.