• Title/Summary/Keyword: failure/failure mode

Search Result 2,240, Processing Time 0.034 seconds

Progressive Failure Analysis and Strength Prediction based on Hashin Failure Criterion of Bolted Composite Joint (Hashin 파손이론을 이용한 복합재 볼트체결부의 점진적 파손 해석 및 강도 예측)

  • Kim, Seongmin;Kim, Pyunghwa;Doh, Sungchul;Kim, Hyounggun;Park, Jungsun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.936-938
    • /
    • 2017
  • In this paper, the progressive failure analysis of a bolted composite joint which is used in combustion tubes of projectiles and weapon systems is performed. Hashin's failure criterion is considered as fiber tensile failure mode, fiber compressive failure mode, matrix tensile failure mode, and matrix compressive failure mode for this analysis. And this criterion is used to make user subroutine, UMAT. Through the progressive failure analysis we predicted failure strength and compared failure strength with specimen test result.

  • PDF

A Study on the Failure Mode Identification of Railway Signaling Embedded System (철도신호용 임베디드시스템의 고장모드도출에 관한 연구)

  • Shin, Duck-O;Lee, Jae-Ho;Lee, Kang-Me;Kim, Young-Kye
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.262-265
    • /
    • 2007
  • This paper is about the study on the failure mode identification of railway signaling embedded system thru which quantitative reliability and safety can be compared reciprocally. Frequency of each failure mode makes possible to compare the reliability of each system and frequency of dangerous failure is used as the measurement standards for system safety. Therefore, this paper provides both reliability-related failure mode and safety-related failure mode by modeling the railway signaling embedded system.

  • PDF

Strength failure behavior of granite containing two holes under Brazilian test

  • Huang, Yan-Hua;Yang, Sheng-Qi;Zhang, Chun-Shun
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.919-933
    • /
    • 2017
  • A series of Brazilian tests under diameter compression for disc specimens was carried out to investigate the strength and failure behavior by using acoustic emission (AE) and photography monitoring technique. On the basis of experimental results, load-displacement curves, AE counts, real-time crack evolution process, failure modes and strength property of granite specimens containing two pre-existing holes were analyzed in detail. Two typical types of load-displacement curves are identified, i.e., sudden instability (type I) and progressive failure (type II). In accordance with the two types of load-displacement curves, the AE events also have different responses. The present experiments on disc specimens containing two pre-existing holes under Brazilian test reveal four distinct failure modes, including diametrical splitting failure mode (mode I), one crack coalescence failure mode (mode II), two crack coalescences failure mode (mode III) and no crack coalescence failure mode (mode IV). Compared with intact granite specimen, the disc specimen containing two holes fails with lower strength, which is closely related to the bridge angle. The failure strength of pre-holed specimen first decreases and then increases with the bridge angle. Finally, a preliminary interpretation was proposed to explain the strength evolution law of granite specimen containing two holes based on the microscopic observation of fracture plane.

Reliability Assessment of Machine Tools Using Failure Mode Analysis Programs (고장모드 분석 프로그램을 통한 공작기계의 신뢰성 평가)

  • Kim Bong-Suk;Lee Soo-Hun;Song Jun-Yeob;Lee Seung-Woo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.15-23
    • /
    • 2005
  • For reliability assessment for machine tools, failure mode analyses by two viewpoints were studied in this paper. First, this study developed the reliability data analysis program, which searches f3r optimal failure distribution like failure rate or MTBF(Mean Time Between Failure) using failure data and reliability test data of mechanical parts in the web. Moreover, this data analysis program saves both failure data or reliability data and their failure rate or MTBF for database establishment. Second, this paper conducted failure mode analysis through such performance tests as circular movement test and vibration testing for machine tools when reliability data is not available. A developed web-based analysis program shows correlations between failure mode and performance test result and also accumulates all the data. These kinds of data analysis programs and stored data furnish valuable information for improving the reliability of mechanical system.

Risk Evaluation Based on the Time Dependent Expected Loss Model in FMEA (FMEA에서 시간을 고려한 기대손실모형에 기초한 위험 평가)

  • Kwon, Hyuck-Moo;Hong, Sung-Hoon;Lee, Min-Koo;Sutrisno, Agung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.104-110
    • /
    • 2011
  • In FMEA, the risk priority number(RPN) is used for risk evaluation on each failure mode. It is obtained by multiplying three components, i.e., severity, occurrence, and detectability of the corresponding failure mode. Each of the three components are usually determined on the basis of the past experience and technical knowledge. But this approach is not strictly objective in evaluating risk of a given failure mode and thus provide somewhat less scientific measure of risk. Assuming a homogeneous Poisson process for occurrence of the failures and causes, we propose a more scientific approach to evaluation of risk in FMEA. To quantify severity of each failure mode, the mission period is taken into consideration for the system. If the system faces no failure during its mission period, there are no losses. If any failure occurs during its mission period, the losses corresponding to the failure mode incurs. A longer remaining mission period is assumed to incur a larger loss. Detectability of each failure mode is then incorporated into the model assuming an exponential probability law for detection time of each failure cause. Based on the proposed model, an illustrative example and numerical analyses are provided.

Major causes of failure and recent measurements of tunnel construction (터널시공 중 붕락발생 원인과 최신 보강기술)

  • Park, Bong-Ki;Hwang, Je-Don;Park, Chi-Myeon;Kim, Sang-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.140-153
    • /
    • 2005
  • During the tunnel construction the major failure mode can be categorized as: tunnel failure just after the tunnel excavation without support, failure after application of shotcrete and finally failure after setting the concrete lining. The failure mode just after the tunnel excavation without support, can be further classified as : bench failure, crown failure, face failure, full face failure, failure due to weak strata and failure due to overburden. Moreover the failure after application of shotcrete is classified as heading face failure, settlement of shotcrete support, local failure of shotcrete lining and invert shotcrete. To find out the major causes of tunnel collapse, the investigation was done in case of the second phase of Seoul subway construction. The investigation results depicted that the major causes of tunnel collapse were due to the weak layer of rock/fault and sudden influx of ground water from the tunnel crown. While the investigation results of the mountain road tunnels construction have shown that the major causes of tunnel failure were inadequate analysis of tunnel face mapping results, intersection of faults and limestone cavities. In this paper some recent measurement in order to mitigate such tunnel collapse are presented

  • PDF

Effects of Thinning Length on Failure Mode of Local Wall Thinned Pipe (감육 배관의 손상모드에 미치는 감육부 길이의 영향)

  • Kim, Jin-Weon;Park, Chi-Yong;Lee, Sung-Ho;Kang, Tai-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.357-362
    • /
    • 2001
  • The pipe fracture tests were performed on 102mm-Sch.80 carbon steel pipe with various local wall thinning shapes, in order to understand failure behavior of thinned pipe. Pipe specimens were subjected to monotonic bending moment, using 4-points loading system, under internally pressurized condition. From the results of experiment, the failure mode, load carrying capacity, and deformability of local wall thinning pipe were investigated. Failure mode of thinned pipe depended on magnitude of internal pressure and thinning length as well as loading direction and thinning depth and angle. The variation in load carrying capacity and deformability of thinned pipe with length of thinned area was determined by stress type appled to thinning region and circumferential thinning angle. Also, the effect of internal pressure on failure behavior was dependent on failure mode of thinned pipe, and it promoted crack occurrence and mitigated local buckling at thinned area.

  • PDF

An Optimal Block Replacement Policy Using Items with Different Reliability

  • Lie, Chang-Hoon;Bae, Moon-Sik;Chun, Young-Ho
    • Journal of the military operations research society of Korea
    • /
    • v.10 no.2
    • /
    • pp.61-73
    • /
    • 1984
  • A block replacement policy using items with different reliability is discussed. We divide system unit failure modes into two modes and use less reliable unit when operating unit fails near the planned preventive replacement time. In this policy, item A has two failure modes. Mode-1 failure is removed by minimal repair, mode-2 failure by replacement. If mode-2 failure of item A happens in (0, $T-{\delta}$), failure item A is replaced by new item A. If mode-2 failure of item A happens in ($T-{\delta}$, T), failure item A is replaced by new item B. Item B should be cheaper and less durable than item A. Under this policy, we determine the preventive replacement interval $T^{*}$ and the interval ${\delta}^{*}$ of item B replacement which minimize the cost rate per unit time.

  • PDF

Block 대체정책에 관한 연구

  • Bae, Mun-Sik
    • ETRI Journal
    • /
    • v.6 no.3
    • /
    • pp.17-20
    • /
    • 1984
  • A block replacement policy using items with different reliability is discussed. We devide system unit failure modes into two modes and use less reliable unit when operating unit fails near the planned preventive replacement time. In this policy, item A has two failure modes. Mode-1 failure is removed by minimal repair, mode-2 failure by replacement. If mode-2 failure of item A happens in (0,T- $\delta$). failure item A is replaced by new item A. If mode-2 failure of item A happens in(T-$\delta$,T), failure item A is replaced by new item B. Item B should be cheaper and less durable than item A. Under this policy, we determine the preventive replacement interval T and the interval $\delta$ of item B replacement which minimize the cost rate per unit time.

  • PDF

Evaluation of failure mode of tunnel-type anchorage for a suspension bridge via scaled model tests and image processing

  • Seo, Seunghwan;Lim, Hyungsung;Chung, Moonkyung
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.457-470
    • /
    • 2021
  • In this study, the pull-out behavior of a tunnel-type anchorage for suspension bridges was investigated using experimental tests and image processing analyses. The study focused on evaluating the initial failure behavior and failure mode of the tunnel-type anchorage. In order to evaluate the failure mode of tunnel-type anchorage, a series of scaled model tests were conducted based on the prototype anchorage of the Ulsan Grand Bridge. In the model tests, the anchorage body and surrounding rocks were fabricated using a gypsum mixture. The pull-out behavior was investigated under plane strain conditions. The results of the model tests demonstrate that the tunnel-type anchorage underwent a wedge-shaped failure. In addition, the failure mode changed according to the differences in the physical properties of the surrounding rock and the anchorage body and the size of the anchor plate. The size of the anchor plate was found to be an important parameter that determines the failure mode. However, the difference in physical properties between the surrounding rock and the anchorage body did not affect its size. In addition, this study analyzed the initial failure behavior of the tunnel-type anchorage through image analysis and confirmed that the failure was sequentially transferred from the inside of the tunnel to the surrounding rock according to the image analysis. The reasonable failure mode for the design of the tunnel-type anchorage should be wedge-type rather than pull-out type.