• 제목/요약/키워드: factor von Neumann algebras

검색결과 6건 처리시간 0.021초

NONLINEAR MAPS PRESERVING THE MIXED PRODUCT *[X ⋄ Y, Z] ON *-ALGEBRAS

  • Raof Ahmad Bhat;Abbas Hussain Shikeh;Mohammad Aslam Siddeeque
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1019-1028
    • /
    • 2023
  • Let 𝔄 and 𝔅 be unital prime *-algebras such that 𝔄 contains a nontrivial projection. In the present paper, we show that if a bijective map Θ : 𝔄 → 𝔅 satisfies Θ(*[X ⋄ Y, Z]) = *[Θ(X) ⋄ Θ(Y), Θ(Z)] for all X, Y, Z ∈ 𝔄, then Θ or -Θ is a *-ring isomorphism. As an application, we shall characterize such maps in factor von Neumann algebras.

Essentially normal elements of von neumann algebras

  • Cho, Sung-Je
    • 대한수학회논문집
    • /
    • 제10권3호
    • /
    • pp.653-659
    • /
    • 1995
  • We prove that two essentially normal elements of a type $II_{\infty}$ factor von Neumann algebra are unitarily equivalent up to the compact ideal if and only if they have the identical essential spectrum and the same index data. Also we calculate the spectrum and essential spectrum of a non-unitary isometry of von Neumann algebra.

  • PDF

LIE TRIPLE DERIVATIONS ON FACTOR VON NEUMANN ALGEBRAS

  • Liu, Lei
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.581-591
    • /
    • 2015
  • Let $\mathcal{A}$ be a factor von Neumann algebra with dimension greater than 1. We prove that if a linear map ${\delta}:\mathcal{A}{\rightarrow}\mathcal{A}$ satisfies $${\delta}([[a,b],c])=[[{\delta}(a),b],c]+[[a,{\delta}(b),c]+[[a,b],{\delta}(c)]$$ for any $a,b,c{\in}\mathcal{A}$ with ab = 0 (resp. ab = P, where P is a fixed nontrivial projection of $\mathcal{A}$), then there exist an operator $T{\in}\mathcal{A}$ and a linear map $f:\mathcal{A}{\rightarrow}\mathbb{C}I$ vanishing at every second commutator [[a, b], c] with ab = 0 (resp. ab = P) such that ${\delta}(a)=aT-Ta+f(a)$ for any $a{\in}\mathcal{A}$.

A NOTE ON NONLINEAR SKEW LIE TRIPLE DERIVATION BETWEEN PRIME ⁎-ALGEBRAS

  • Taghavi, Ali;Nouri, Mojtaba;Darvish, Vahid
    • Korean Journal of Mathematics
    • /
    • 제26권3호
    • /
    • pp.459-465
    • /
    • 2018
  • Recently, Li et al proved that ${\Phi}$ which satisfies the following condition on factor von Neumann algebras $${\Phi}([[A,B]_*,C]_*)=[[{\Phi}(A),B]_*,C]_*+[[A,{\Phi}(B)]_*,C]_*+[[A,B]_*,{\Phi}(C)]_*$$ where $[A,B]_*=AB-BA^*$ for all $A,B{\in}{\mathcal{A}}$, is additive ${\ast}-derivation$. In this short note we show the additivity of ${\Phi}$ which satisfies the above condition on prime ${\ast}-algebras$.

JONES' INDEX FOR FIXED POINT ALGEBRAS

  • Lee, Jung-Rye
    • 대한수학회논문집
    • /
    • 제13권1호
    • /
    • pp.29-36
    • /
    • 1998
  • We show that if M is a $II_1$-factor and a countable discrete group G acts outerly on M then Jones' index $[M:M^G]$ of a pair of $II_1^-factors is equal to the order $\mid$G$\mid$ of G. It is also shown that for a subgroup H of G Jones' index $[M^H:M^G]$ is equal to the group index [G:H] under certain conditions.

  • PDF

ON THE BICENTRALIZERS OF VON NEUMANN ALGEBRAS

  • Kim, Sang-Og
    • 대한수학회보
    • /
    • 제23권2호
    • /
    • pp.117-121
    • /
    • 1986
  • Connes [2] showed that if M is an injective .sigma.-finite factor of type II $I_{1}$ and $B_{\phi}$=C1 for some normal faithful state .phi. on M then M is isomorphic to the Araki-wood factor. In [7], Haagerup has succeeded to show that if M is an injective factor of type II $I_{1}$ with separable predual, then $B_{\phi}$=C1 for every normal faithful state on M. Since injective factors of type II $I_{\lambda}$, 0.leq..lambda.<1, were classified [9], this together classifies all injective factors of type III with separable predual. It is not known for non-injective case. In this paper we consider some conditions under which the bicentralizers be trivial.ivial.

  • PDF