• Title/Summary/Keyword: facility condition monitoring

Search Result 68, Processing Time 0.032 seconds

Spatial, Vertical, and Temporal Variability of Ambient Environments in Strawberry and Tomato Greenhouses in Winter

  • Ryu, Myong-Jin;Ryu, Dong-Ki;Chung, Sun-Ok;Hur, Yun-Kun;Hur, Seung-Oh;Hong, Soon-Jung;Sung, Je-Hoon;Kim, Hak-Hun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.47-56
    • /
    • 2014
  • Purpose: In protected crop production facilities such as greenhouse and plant factory, farmers should be present and/or visit frequently to the production site for maintaining optimum environmental conditions and better production, which is time and labor consuming. Monitoring of environmental condition is highly important for optimum control of the conditions, and the condition is not uniform within the facility. Objectives of the paper were to investigate spatial and vertical variability in ambient environmental variables and to provide useful information for sensing and control of the environments. Methods: Experiments were conducted in a strawberry-growing greenhouse (greenhouse 1) and a cherry tomato-growing greenhouse (greenhouse 2). Selected ambient environmental variables for experiment in greenhouse 1 were air temperature and humidity, and in greenhouse 2, they were air temperature, humidity, PPFD (Photosynthetic Photon Flux Density), and $CO_2$ concentration. Results: Considerable spatial, vertical, and temporal variability of the ambient environments were observed. In greenhouse 1, overall temperature increased from 12:00 to 14:00 and increased after that, while RH increased continuously during the experiments. Differences between the maximum and minimum temperature and RH values were greater when one of the side windows were open than those when both of the windows were closed. The location and height of the maximum and minimum measurements were also different. In greenhouse 2, differences between the maximum and minimum air temperatures at noon and sunset were greater when both windows were open. The maximum PPFD were observed at a 3-m height, close to the lighting source, and $CO_2$ concentration in the crop growing regions. Conclusions: In this study, spatial, vertical, and temporal variability of ambient crop growing conditions in greenhouses was evaluated. And also the variability was affected by operation conditions such as window opening and heating. Results of the study would provide information for optimum monitoring and control of ambient greenhouse environments.

Thermal Characteristics of Imaging Device Exposed to High Temperature and High Pressure (고온고압 환경에 노출된 영상장치 내열특성)

  • Shin, Jaeik;Ahn, Dongchan;Cho, Jaehan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1192-1195
    • /
    • 2017
  • This paper describes the heat resistance characteristics of the imaging device installed in behind the engine due to monitoring the engine condition, and this paper includes the introduction and development of the imaging probe. Because the imaging device which is at the rear end of the engine is exposed to a high temperature and high pressure, the stability of the device should be secured by changing the device shape and supplying cooling water. The imaging probe in ADD engine test facility is installed at the rear end of the engine, and it is designed by reflecting the heat resistance characteristics to ensure the stability of the device.

  • PDF

Abnormal Detection in 3D-NAND Dielectrics Deposition Equipment Using Photo Diagnostic Sensor

  • Kang, Dae Won;Baek, Jae Keun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.74-84
    • /
    • 2022
  • As the semiconductor industry develops, the difficulty of newly required process technology becomes difficult, and the importance of production yield and product reliability increases. As an effort to minimize yield loss in the manufacturing process, interests in the process defect process for facility diagnosis and defect identification are continuously increasing. This research observed the plasma condition changes in the multi oxide/nitride layer deposition (MOLD) process, which is one of the 3D-NAND manufacturing processes through optical emission spectroscopy (OES) and monitored the result of whether the change in plasma characteristics generated in repeated deposition of oxide film and nitride film could directly affect the film. Based on these results, it was confirmed that if a change over a certain period occurs, a change in the plasma characteristics was detected. The change may affect the quality of oxide film, such as the film thickness as well as the interfacial surface roughness when the oxide and nitride thin film deposited by plasma enhenced chemical vapor deposition (PECVD) method.

Grid-Based Key Pre-Distribution for Factory Equipment Monitoring (공장 설비 모니터링을 위한 그리드 기반 키 선분배 기법)

  • Cho, YangHui;Park, JaePyo;Yang, SeungMin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.147-152
    • /
    • 2016
  • Wireless sensor networks that are easy to deploy and install are ideal for building a system that monitors the condition of the equipment in a factory environment where wiring is difficult. The ZigBee has characteristics of low price and low power compared with other wireless communication protocols and is suitable for a monitoring system requiring a plurality of nodes. ZigBee communication requires encryption security between devices because all protocol layers are based on OTM trusted by each other. In the communication between nodes, node authentication must be guaranteed and exposure of confidential information managed by each node should be minimized. The facilities of the factory are regular and stationary in distribution location. In order to protect the information gathered from the sensor in the factory environment and the actuator control information connected to the sensor node, we propose a cryptosystem based on the two - dimensional grid - based key distribution method similar to the distribution environment of the facility.

The Analysis of Maturity on Implementation of Safety and Health Management System in a Construction Company (건설업 안전보건경영시스템 실행의 성숙도 분석)

  • Oh, Byung Sub;Kwon, Chang Hee
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.310-318
    • /
    • 2012
  • Actual condition by items based on the level of execution of Construction Company certified by Construction Safety and Health Management Systems (KOSHA 18001) was investigated, analyzed and evaluated reflecting various opinions fincluding safety experts, top management, audit experts, and construction engineers. Currently, the maintenance is being managed through internal audit after the safety and health management system has been certified, but it is difficult to identify the degree of continuous improvement. In order to present the standards to see the level of quantified system, this study was conducted. The purpose of this study is to present the system maturity evaluation tool to be used to reduce occupational accidents through proper establishment and continuous improvement of national health and safety management system. Results of this study are summarized through identification of current condition of implementation of KOSHA 18001 system, development of maturity measurement tool and verification as follows: First, priority of implementation for activities of headquarters and on-site was determined by importance of activities such as the risk assessment, safety and health accident prevention activities, performance assessment and monitoring, resource management and support, and management review and improvement in order. In addition, the expert group presented that association with continuous improvement activities could establish the system by presenting strengths, weaknesses and improvement subjects of system.

Photosynthesis Monitoring of Rice using SPAR System to Respond to Climate Change

  • Hyeonsoo Jang;Wan-Gyu Sang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-Hui Ryu;Jong-Tag Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.169-169
    • /
    • 2022
  • Over the past 100 years, the global average temperature has risen by 0.75 ℃. The Korean Peninsula has risen by 1.8 ℃, more than twice the global average. According to the RCP 8.5 scenario, the CO2 concentration in 2100 will be 940 ppm, about twice as high as current. The National Institute of Crop Science(NICS) is using the SPAR (Soil-Plant Atmosphere Research) facility that can precisely control the environment, such as temperature, humidity, and CO2. A Python-based colony photosynthesis algorithm has been developed, and the carbon and nitrogen absorption rate of rice is evaluated by setting climate change conditions. In this experiment, Oryza Sativa cv. Shindongjin were planted at the SPAR facility on June 10 and cultivated according to the standard cultivation method. The temperature and CO2 settings are high temperature and high CO2 (current temperature+4.7℃ temperature+4.7℃·CO2 800ppm), high temperature single condition (current temperature+4.7℃·CO2 400ppm) according to the RCP8.5 scenario, Current climate is set as (current temperature·CO2400ppm). For colony photosynthesis measurement, a LI-820 CO2 sensor was installed in each chamber for setting the CO2 concentration and for measuring photosynthesis, respectively. The colony photosynthetic rate in the booting stage was greatest in a high temperature and CO2 environment, and the higher the nitrogen fertilization level, the higher the colony photosynthetic rate tends to be. The amount of photosynthesis tended to decrease under high temperature. In the high temperature and high CO2 environment, seed yields, the number of an ear, and 1000 seed weights tended to decrease compared to the current climate. The number of an ear also decreased under the high temperature. But yield tended to increase a little bit under the high temperature and high CO2 condition than under the high temperature. In addition, In addition to this study, it seems necessary to comprehensively consider the relationship between colony photosynthetic ability, metabolite reaction, and rice yield according to climate change.

  • PDF

Investigation of helminths and protozoans infecting old world monkeys: captive vervet, cynomolgus, and rhesus monkeys

  • Lee, Jae-Il;Kang, Sook-Jung;Kim, Nan-A;Lee, Chi-Woo;Ahn, Kyoung-Ha;Kwon, Hyouk-Sang;Park, Chung-Gyu;Kim, Sang-Joon
    • Korean Journal of Veterinary Research
    • /
    • v.50 no.4
    • /
    • pp.273-277
    • /
    • 2010
  • The objective of this study was to investigate the infection rate of gastro-intestinal tract parasites on acquired laboratory nonhuman primates, Vervet monkey, Cynomolgus monkey, and Rhesus monkey acquired from Japan and China. These monkeys have been acclimating at an individual housing condition after our legal quarantine period. We examined 133 fecal samples to investigate parasitic infection using direct smear and formalin-ether-sedimentation technique. As a result, total parasitic infection rate was 33.8% (n = 45/133) for all monkeys. Two species of macaques, cynomolgus and rhesus, were infected with Trichuris trichiura (4), Giardia lamblia (4) and Balantidium coli (41). Vervet monkeys, which had been controlled by individual housing system for a long time, were clear for parasitic infection. The protozoan, Balantidium coli was one of the most frequently detected in these monkey colonies. Double infection was noted in only 4 monkeys and involved with Trichuris trichiura and Balantidium coli. Serious clinical symptoms were not observed in the most of the infected monkeys, but the monkeys infected by Giardia lamblia showed intermittent or chronic watery diarrhea. Consequently, the prophylactic anthelmintic treatment and periodic monitoring are essential to preserve the SPF colonies in the laboratory facility.

The Study on the Evaluation of Environment Function at Small Stream - In the Case of Hongdong Stream in Hongsung-gun - (농촌지역 소하천의 환경성 평가 연구 - 홍성군 홍동천을 사례로 -)

  • Kang, Banghun;Son, Jin-Kwan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.5
    • /
    • pp.81-101
    • /
    • 2011
  • This study was conducted to understand the environmental and ecological function of habitat through evaluation of water environment, soil environment, vegetation characteristics, macro-invertebrate characteristics, and visual habits environment evaluation (SVAP) in Hongdong stream located in Hongseong-Gun, Chungnam Province, and hereafter to utilize the results for the habits reconstruction and improvement project. As the results of water quality analysis, BOD, COD, T-P was almost below the standard quality from upper stream to down stream. The construction of small reservoir, wetland and water purification facility, and the management of non-point pollution are proposed to improve these problems. The soil texture was sandy soil, which is unfitted with vegetation development. The construction of shallows and bogs, and induction of soil sedimentation and biotope formation are proposed to improve these problems. In the plant flora, total 90 kinds were observed with 81 species and nine varieties in total 36 families and 85 genera, and the naturalization rate was higher at down area than upper area. As the results of macro-invertebrate fauna survey, total 26 species and 297 individuals in 20 families and 22 genera were collected. Peltodytes sinensis, Chironomidae sp., and Culicidae sp., which are observed at polluted environment, were collected as dominant species. An appropriate vegetation management party idea is necessary, and it is done an idea in consideration of the soil and a physical characteristic. Visual habits environment evaluation (SVAP) result was mostly determined with below normal (Fair) grade. Pollution source interception, purification pond establishment, and various bog establishment are proposed to improve these problems. With the above results, the ecological environment was determined with bad condition, and the improvement of biotope was urgently needed through sustainable monitoring and management of streams habitat in rural area.

A Study for Adopting the Temperature Control Unit on Memory Device Tester Based on Principle of Thermoelectric Semiconductor (열전소자 원리를 이용한 부품 Tester용 온도공급 장치 연구 (메모리 Device Tester용 온도제어장치 도입을 위한 연구))

  • Kim, Sun-Ju;Hong, Chul-Ho;Shin, Dong-Uk;Seo, Seong-Bum;Lee, Moo-Jea
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.414-416
    • /
    • 2003
  • As environmental conditions for memory products are increasingly high speed/high density, adopting diverse system configuration, it's more and more difficult for current component tester to adopt the actual condition of field application. If system test screening is realized in component level, test coverage failure can be made more secured in the initial stage, evaluation cost can be reduced and the effectiveness of investment for the facility can be maximized. Based on the above background, component automatic system tester was developed and showed off satisfactory results per each memory device family. In this paper, component quality stabilization strategy and cost saving for tester investment through future Quality monitoring and application to mass production will be presented.

  • PDF

Performance Estimation of Large-scale High-sensitive Compton Camera for Pyroprocessing Facility Monitoring (파이로 공정 모니터링용 대면적 고효율 콤프턴 카메라 성능 예측)

  • Kim, Young-Su;Park, Jin Hyung;Cho, Hwa Youn;Kim, Jae Hyeon;Kwon, Heungrok;Seo, Hee;Park, Se-Hwan;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Compton cameras overcome several limitations of conventional mechanical collimation based gamma imaging devices, such as pin-hole imaging devices, due to its electronic collimation based on coincidence logic. Especially large-scale Compton camera has wide field of view and high imaging sensitivity. Those merits suggest that a large-scale Compton camera might be applicable to monitoring nuclear materials in large facilities without necessity of portability. To that end, our research group have made an effort to design a large-scale Compton camera for safeguard application. Energy resolution or position resolution of large-area detectors vary with configuration style of the detectors. Those performances directly affect the image quality of the large-scale Compton camera. In the present study, a series of Geant4 Monte Carlo simulations were performed in order to examine the effect of those detector parameters. Performance of the designed large-scale Compton camera was also estimated for various monitoring condition with realistic modeling. The conclusion of the present study indicates that the energy resolution of the component detector is the limiting factor of imaging resolution rather than the position resolution. Also, the designed large-scale Compton camera provides the 16.3 cm image resolution in full width at half maximum (angular resolution: $9.26^{\circ}$) for the depleted uranium source considered in this study located at the 1 m from the system when the component detectors have 10% energy resolution and 7 mm position resolution.